
Technische Universität Berlin
Fakultät IV – Elektrotechnik und Informatik

Modelle und Theorie Verteilter Systeme

Master’s Thesis

Computing Coupled Similarity

Benjamin Bisping
ID: 321187

info@bbisping.de

Supervised by
Prof. Dr. Uwe Nestmann
Prof. Dr. Holger Hermanns

Berlin
April 2018

info@bbisping.de

Selbständigkeitserklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Benjamin Bisping
Berlin, 18.April 2018

Digital Version
This master’s thesis is accompanied by digital content, which is available from

https://coupledsim.bbisping.de.

The Scala implementations and Isabelle/HOL formalizations referenced in this thesis
can be found there. I pledge to keep the online version live for at least ten years, that
is, at least until December 2028. Moreover, the printed version contains a DVD with
the digital content.

Acknowledgements
I’d like to thank everybody who helped me develop and finish this thesis (in order of
appearance).

• Uwe Nestmann and Kirstin Peters for introducing me to coupled simulations.

• My colleagues at Modelle und Theorie Verteilter Systeme, especially my awesome
office mate David Karcher, master of super-exponential normal forms, who did
a lot to support me in my research.

• Holger Hermanns and the Dependable Systems and Software group, especially
Felix Freiberger, for their hospitality during my visit to Saarbrücken; Ralf
Wimmer for providing me with material on Sigref.

• The people who attended my talk at D-CON 2018 and discussed games and
simulations with me, especially Stephan Mennicke.

• My lovely writing mates Hai-Hsin and Baum, who currently are in the midst of
writing their master’s thesis and dissertation. I wish them lots of success!

i

https://coupledsim.bbisping.de

Abstract
Coupled similarity is a notion of equivalence for systems with internal actions. It has
its applications in contexts where internal choices must transparently be distributed
in time or space, for example, in process calculi encodings or in action refinements. To
the author’s knowledge, no tractable algorithms for the computation of the coupled
simulation preorder and coupled similarity have been presented up to now. Accordingly,
there is no tool support for coupled similarity.

In this master’s thesis, we present three algorithms to compute coupled similarity:
An algorithm based on reduction to strong bisimilarity, a coinductive fixed-point
algorithm, and a game-theoretic algorithm. The game-theoretic algorithm runs in
O(| ·̂⇒| |S|) space and time where ·̂⇒ is the weak transition relation and S the state
space of the input transition system. This matches the time complexity of the best
known simulation preorder algorithms. Additionally, we survey definitions of coupled
simulation from the literature and show that deciding the coupled simulation preorder
is at least as hard as deciding the weak simulation preorder.

The thesis is accompanied by an Isabelle/HOL formalization of key results, as well
as by a Scala.js web tool implementation of the discussed algorithms, and a parallelized
version of the game algorithm using the Apache Flink framework.

Zusammenfassung
Gekoppelte Similarität ist ein Gleichheitsbegriff auf Transitionssystemen mit internen
Ereignissen. Ihre Anwendungen liegen dort, wo interne Entscheidungen in Raum oder
Zeit zu verteilen sind, ohne dass das im Modell als Unterschied gilt. Beispiele dafür sind
Prozess-Kalkül-Übersetzungen und Aktionsverfeinerungen. Bisher sind keine effizienten
Algorithmen für gekoppelte Similarität und ihre Quasiordnung vorgestellt worden.
Entsprechend gibt es auch keine Unterstützung durch Tools.

In dieser Master-Arbeit entwickeln wir drei Algorithmen zur Berechnung von
gekoppelten Similaritätsrelationen: Eine Reduktion auf starke Bisimilarität, einen
koinduktiven Fixpunkt-Algortihmus und einen spieltheoretischen Algorithmus. Letz-
terer läuft in Zeit- und Speicher-Komplexität von O(| ·̂⇒| |S|), wobei ·̂⇒ die schwache
Schrittrelation bezeichnet und S den Zustandsraum des eingegebenen Transitions-
systems. Das entspricht in der Zeitkomplexität den besten bekannten Algorithmen
der schwachen Simulations-Quasiordnung. Des Weiteren ordnen wir Definitionen von
gekoppelter Similarität aus der Literatur und zeigen, dass das Entscheidungsproblem
der gekoppelten Simulations-Quasiordnung mindestens so komplex ist wie das der
schwachen Simulations-Quasiordnung.

Eine Isabelle/HOL-Formalisierung der Kernergebnisse, ein die Algorithmen in Sca-
la.js implementierendes Webtool und eine parallelisierte Version des spieltheoretischen
Algorithmus für die Apache-Flink-Plattform begleiten die Arbeit.

ii

Contents

1 Introduction 1
1.1 Computing Coupled Similarity . 2
1.2 This Thesis . 2
1.3 Accompanying Artifacts . 3

2 Preliminaries 4
2.1 System Models . 4
2.2 Equivalences and Preorders . 8
2.3 Axiomatizations . 14
2.4 Game-Theoretic Characterizations . 16

3 Coupled Simulation 19
3.1 Definitions of Coupled Simulation . 19
3.2 Properties of Coupled Similarity . 23
3.3 Axiomatization of Coupled Similarity 26
3.4 Coupled Simulation as a Game . 28
3.5 How Hard Can It Be? . 31

4 Algorithms 34
4.1 Setting the Stage . 34
4.2 The Bisimulation Approach . 36
4.3 The Fixed-Point Approach . 39
4.4 The Game-Theoretic Approach . 41
4.5 Optimizing the Game Algorithm . 43
4.6 Discussion . 47

5 A Scalable Implementation 48
5.1 Prototype Implementation . 48
5.2 Evaluation . 50

6 Conclusion 52

Bibliography 54

Nomenclature 58

iii

Chapter 1

Introduction

In a computer system, a lot of things are going on that we cannot observe. Systems
with the same observable behavior in one context might expose differing behavior in
other contexts. This can be because seemingly identical visible actions actually lead
to different internal system states (non-determinism), or because the system commits
to a course of events internally (internal choice).

When is it justified to consider two systems—or system models—to be equivalent?
Computer science has developed a multitude of notions of equivalence for such systems.
One interesting notion is coupled similarity. It adds a weak form of symmetry (coupling)
to weak similarity.

Coupled similarity hits a sweet spot within the linear-time branching-time spectrum
[vG93]. At that spot, one can encode between brands of process calculi [NP00,
HWPN15], name a branching-time semantics for Communicating Sequential Processes
[vG17], distribute synchronizations [PS92], and refine atomic actions [Ren00, DW03].

coupled
sim.

weak
bisim.

weak
sim.

contra-
sim.

Figure 1.1: Notions of equivalence for systems with internal actions.

Figure 1.1 gives a first intuition where we are in the spectrum. Coupled similarity does
distinguish systems by their branching behavior, but it does not see the precise structure
of internal transitions and choices. It is stronger than weak similarity as it notices
deadlocks but weaker than weak bisimilarity as the latter captures internal choice
structure. It also is finer than contrasimilarity as it can tell non-determinism introduced
by internal choices from non-determinism introduced by branching visible steps. The
set of coupled simulations is a proper superset of the set of weak bisimulations and
precisely the intersection of weak simulations and contrasimulations.

1

1.1 Computing Coupled Similarity
This thesis is not (only) about how neat coupled similarity is but primarily about how
to decide which states of a finite transition system are coupled-similar.

Computing coupled similarity is an interesting challenge because the aforemen-
tioned sweet spot comes at a price: Coupled similarity is virtually the finest notion of
equivalence for systems with internal actions where the equivalence and the correspond-
ing behavioral preorder differ decisively. This makes the computation significantly
more complicated than for finer relations such as weak bisimilarity.

While there are efficient and optimized algorithms for weak bisimilarity [BGRR16],
up to now, no algorithms for coupled similarity, being just slightly coarser, have been
developed. Parrow and Sjödin [PS94] briefly addressed the question of computing
coupled similarity as possible future work. Apparently, the future is now.

1.2 This Thesis
After an introduction to the field in Chapter 2, we make the following contributions:

• We survey pre-existing definitions of coupled simulation and prove their coinci-
dences (Section 3.1).

• We characterize the coupled simulation preorder by a game (Section 3.4).

• We reduce weak simulation to coupled simulation, thereby showing that deciding
coupled simulation is comparably hard—presumably cubic (Section 3.5).

• Picking up the thread of [PS94], we develop an exponential-time coupled similarity
algorithm based on their normalization procedure (Section 4.2).

• We present a more straight-forward polynomial-time coupled simulation fixed-
point algorithm and prove its correctness (Section 4.3).

• We propose a game-theoretic coupled simulation algorithm (Section 4.4), which
runs in cubic time and can be improved further (Section 4.5).

• We implement the game algorithm for massively parallel computation using
Apache Flink and benchmark its performance (Chapter 5).

To unfold these contributions, the core chapters (Chapter 2, 3, 4) each follow the
trinity of characterizations for notions of behavioral equivalence, consisting of relation
properties, axiomatizations, and games. Figure 1.2 explicates this matrix structure.
Chapter 2 introduces transition system models and the aspects of the trinity. Chap-
ter 3 applies the trinity to characterize coupled similarity. Chapter 4 turns the
characterizations into algorithms. The trinity roughly has the following sides:

Relational and coinductive definitions of equivalences imply greatest-fixed-point
algorithms (Sections 2.2, 3.1, and 4.3).

Axiomatizations by equational laws entail reductions to strong bisimulation by
normalization (Sections 2.3, 3.3, and 4.2).

Game characterizations map the equivalence problem to the computation of game
winning regions (Sections 2.4, 3.4, and 4.4).

2

Relations Axioms Games

2.2
Equivalences
and Preorders

2.1
System Models

2.3
Axiomatizations

2.4
Game-Theoretic
Characteriz.

Chapter 2
Preliminaries

3.1 / 3.2
CS-Definitions
and Properties

3.3
Axiomatization
of Coupled Sim.

3.4
Coupled Sim.

Game

3.5
How Hard
Can It Be?

Feasibility

Chapter 3
Coupled Simulation

4.2
Bisimulation
Reduction

4.1
Setting
the Stage

4.3
Fixed-Point
Algorithm

4.4 / 4.5
Game Algorithm

4.6
Discussion

Chapter 4
Algorithms

5.1
Prototype

Implementation

5.2
Evaluation

Chapter 5
Scalable Implementation

Figure 1.2: Structure of the thesis (with icons for accompanying artifacts).

The trinity actually is more of a quadrity in that there also are modal-logical char-
acterizations, which lead to relational coarsest partition algorithms. This aspect has
been factored out of the scope of this thesis. We briefly address it in the conclusion.

1.3 Accompanying Artifacts
This document is accompanied by machine checkable proofs in Isabelle/HOL, a web
tool for experiments with the algorithms implemented in Scala.js, and a parallel
implementation of the game-based main algorithm employing Apache Flink and Scala.

Isabelle/HOL (icon:) is an interactive proof assistant. It can be used to formalize
mathematical definitions and proofs in a machine-checkable way. The proofs tend to
be a little more verbose than corresponding pen-and-paper proofs but achieve a higher
level of maintainability and confidence than the latter. Our formalization can be
found on https://coupledsim.bbisping.de/isabelle/. To keep the presentation
compact, most lemmas in this thesis just go with a hint or proof sketch and a link to
the full-blown Isabelle/HOL proof.

Scala.js () is a programming language that builds a bridge between the functional
world of mathematics and the object-oriented world of application development. It
can be compiled to JavaScript and then run in any modern browser. The source
code of our implementation is available from https://coupledsim.bbisping.de/
code/. Most of it is written in functional Scala.js. For a quick start, please refer to
https://coupledsim.bbisping.de/code/README.md. The compiled tool itself runs
on https://coupledsim.bbisping.de/ and contains all relevant example transition
systems and presented algorithms.

Apache Flink/Scala () is a framework for parallelized big data applications. Our
implementation of the coupled simulation game algorithm using Apache Flink can be
found at https://coupledsim.bbisping.de/code/flink/.

3

https://coupledsim.bbisping.de/isabelle/
https://coupledsim.bbisping.de/code/
https://coupledsim.bbisping.de/code/
https://coupledsim.bbisping.de/code/README.md
https://coupledsim.bbisping.de/
https://coupledsim.bbisping.de/code/flink/

Chapter 2

Preliminaries

As it is the custom, this chapter introduces some standard notions and notations1

for equivalences on labeled transition systems with internal actions. We will look at
examples of how notions of equivalence close to coupled similarity are characterized in
terms of relations, axioms, and games.

The focus of this chapter lies on properties that are important for the characteriza-
tion of coupled similarity later on. A more detailed introduction to the field can be
found in [San12]. Readers familiar with the field can fast-forward to the next chapter.

2.1 System Models
Labeled transition systems and process calculi are two of the core concepts in describing
the behavior of distributed interactive systems—and what in the world is not a
distributed interactive system in some way?

2.1.1 Transition Systems

Labeled transition systems capture a discrete world view, where there is a current
state and a branching structure of possible state changes (“transitions”) to future
states. They, for instance, can be used as semantical models for flowcharts, computer
programs, and board games.

Definition 2.1 (Labeled transition system). A labeled transition system (LTS) is a
tuple S = (S,Στ ,→) where

• S is a set of states,

• Στ is a set of actions containing a special internal action τ ∈ Στ , and

• → ⊆ S × Στ × S is the transition relation.2

We write Σ := Στ\{τ} for the set of visible actions and p α→ p′ for (p, α, p′) ∈ →. We
use p, q to range over states, α, β to range over actions, and a, b to range over visible
actions.

1Later on, the nomenclature on page 58 can be used to disentangle notation. Other hints for
notation: Formulas are implicitly parenthesized from the right. We use · to abstract functions and
relations: f(·) stands for λx. f(x), which is identified with the relation {(x, y) | y = f(x)}. In infix
notation, we omit the outer dots, so ·→ = · ·→ ·.

2 locale Transition_Systems.lts

4

http://coupledsim.bbisping.de/isabelle/Transition_Systems.html#lts

Definition 2.2 (Weak transition relation). The weak transition relation ·̂⇒ is defined
as the reflexive transitive closure of internal steps τ̂⇒ := τ→

∗
combined with â⇒ := a⇒

where α⇒ := τ̂⇒ α→ τ̂⇒.3 We write p ~a⇒ p′, where ~a ∈ Σ∗, iff there is a sequence of steps
p = p0

a0⇒ p1
a1⇒ · · · an−1⇒ pn = p′ or, for the empty word ~a = 〈〉, iff p τ̂⇒ q.

So, the difference between τ⇒ and τ̂⇒ is that the first needs at least one τ→-step
whereas the latter is reflexive. As a shorthand for τ̂⇒, we also write just ⇒.

We call an α⇒-step “weak” whereas an α→-step is referred to as “strong.” In general,
p
α→ p′ entails p α⇒ p′, and p α⇒ p′ entails p α̂⇒ p′.
A visible action a ∈ Σ is said to be weakly enabled in p iff there is p′ such that

p
a⇒ p′.

Definition 2.3 (Stability and divergence). A state p is called stable iff it has no
τ -transitions, p6 τ→. Stable states are maximal with respect to ⇒. For a stable state p,
weak and strong steps coincide p α⇒ · = p

α→ ·.
A state p is called divergent iff it is possible to perform an infinite sequence of

τ -transitions beginning in this state, p τ→
ω
. For a divergent state p′, p⇒ p′ implies

that p also is divergent, that is: divergence is downward closed under ⇒.

2.1.2 Process Calculi

Transition systems arise naturally as an operational semantics for programs written
in some programming language. Concurrency theory aims to provide abstract ways
of understanding distributed computation. To this end, the field has developed a
number of process calculi—formal languages the dynamics of concurrent systems can
be expressed in. These languages are algebraic in the sense that they are built around
term equalities that enable calculations on the terms of the languages.

This thesis is not about the nuances of these process calculi. Nevertheless, it is
worthwhile to understand that the relevance of the different notions of equivalence we
shall discuss, including coupled similarity, is linked to these nuances.

For our purposes, it is enough to introduce the following fragment of Milner’s
Calculus of Communicating Systems (CCS) [Mil89] without value passing:

Definition 2.4 (CCS). The following grammar gives the language of Calculus of
Communicating Systems expressions CCS[I,Σin] for a set of process names I and a set
of visible input actions Σin, which induce corresponding output actions Σout := {ā |
a ∈ Σin} and Σ := Σin ∪ Σout :

P,Q ::= K | α.P | P +Q | P | Q | P \ L,

where K ∈ I, α ∈ Στ , and L ⊆ Σ.

Under a process valuationD : I → CCS[I,Σin], the operational semantics of CCS[I,Σin]
is the transition system SD,CCS[I,Σin] = (CCS[I,Σin],Στ ,→) on process expressions,
where α→ for α ∈ Στ is defined by the following rules. (We define ¯̄a = a.)

Recursion K
α→ P ′ if P

α→ P ′ and D(K) = P .
A process name occurrence K behaves like the referenced process.

3 locale Weak_Transition_Systems.lts_tau

5

http://coupledsim.bbisping.de/isabelle/Weak_Transition_Systems.html#lts_tau

Action prefix α.P
α→ P .

An action prefix α.P can do an α-step and then behave like P .

Choice P +Q
α→ P ′ if P

α→ P ′ or Q α→ P ′.
A choice is resolved towards the first process that makes a step.

Parallel step P | Q α→ P ′ | Q if P
α→ P ′; and P | Q α→ P | Q′ if Q

α→Q′.
Processes in a parallel composition can perform steps with interleaving concur-
rency.

Communication P | Q τ→ P ′ | Q′ if P
a→ P ′ and Q ā→Q′.

Parallel processes can advance with a synchronized step on a shared action
that is output by one of them and input to the other process. The message is
consumed and becomes internal behavior τ .

Restriction P \ L α→ P ′ \ L if P
α→ P ′ and α, ᾱ /∈ L.

A restricted process cannot communicate certain events L to the environment.

We write K def= P to set D(K) to P . We assume that there always is a stuck
process 0, which can be derived by letting 0 def= (a.0) \ {a} where a is some a ∈ Σ.
We use just α as an abbreviation for the process term α.0.

CCS is extremely expressive due to its choice operator. One can easily encode
arbitrary finitely branching transition systems S = (S,Στ ,→) with the valuation
DS : S → CCS[S,Σ]:

DS(s) :=

α1.s
′
1 + . . .+ αn.s

′
n for {(αi, s′i) | 1 ≤ i ≤ n} = s

·→ ·

0 if s6→

If S is finite, the DS -structure is finite as well.
Now, it seems natural to wonder when to consider two processes as behaviorally

equivalent. For example, 0 and 0 | 0 obviously have the same set of outgoing
transitions (the empty set) but are different states in the transition system SD,CCS[I,Σin].
To discuss equivalences, let us introduce a more enlightening example.

2.1.3 Running Example: Exclusively Dining Philosophers

Let us see how transition systems and CCS can be used to model a concurrent situation.
More abstract variants of the following example have been used in the literature to
motivate coupled similarity [NP00, PS92, San12].

Example 2.5 (Gradually committing philosophers). Three philosophers A, B and C
want to eat pasta. To do so, they must first sit down on a bench s and grab a fork f.

A B C s f

6

Unfortunately, only either A alone or the thinner B and C can fit on the bench
simultaneously and there is just one fork. (The philosophers have the skill of eating
with one fork.) From the outside, we are only interested in the fact who of them eats.
So we consider the whole bench-and-fork business internal to the system.

The following CCS structure models the situation. The resources correspond to
output actions (which can only be consumed once) and the obtaining of the resources
corresponds to matching input actions.

Pg def=
(

s̄ | f̄ | s.f.A | s.(f.B | f.C)
)
\ {s, f}

A def= aEats.A
B def= bEats.B
C def= cEats.C

This structure has the following transition system with initial state Pg as its semantics.
Notice that the internal communication concerning the resource allocation turns into
internal τ -actions, which in Pg, gA, and gBC gradually decide who is going to eat the
pasta.

Pg

gA gBC

B CA

τ

τ

τ

τ τ

aEats bEats cEats

One might now be inclined to ponder that exactly one of the philosophers will get
both resources and that we thus could model the situation just as well in the following
way.

Example 2.6 (One-step non-determinism philosophers). If we merge s and f into a
single resource sf, the model becomes:

Po def=
(

s̄f | sf.A | sf.B | sf.C
)
\ {sf}

The corresponding transition system concentrates the internal choice to the starting
node Po.

Po

A
B

C

τ

τ

τ

aEats
bEats

cEats

7

We refer to the philosopher system containing the components of Pg and Po (sharing
A,B,C) as SP. It can also be inspected at https://coupledsim.bbisping.de/#phil
or in Figure 2.2.

So, are Pg and Po behaviorally equivalent? This depends on the notion of equiva-
lence we employ. They obviously can reach different transitions. A notion of equivalence
then tells us which aspects of the state changes really matter—which are “observable.”

Some notions will consider Pg and Po equivalent, some will reject the equivalence.
Sometimes this is a philosophical question. But, more often than not, encodings
between formalisms, and reasonable refinements of specifications only become possible
if the notion of equivalence is coarse enough to accept gradual and one-step internal
commitment as equivalent. Spoiler: Coupled similarity is one of the finest branching-
time equivalences considering Pg and Po equivalent.

2.2 Equivalences and Preorders
Let us introduce weak simulation, weak bisimulation, and contrasimulation. They are
the most relevant notions of equivalence related to coupled similarity.

The framework for arbitrary S = (S,Στ ,→) is the following: We define a property
“X-simulation.” If a relation on the state space R ⊆ S × S fulfills the property, we
call it an X-simulation on S. The property induces a preorder vSX , the “X-simulation
preorder,” with p vSX q iff there is an X-simulation R on S with (p, q) ∈ R. The
preorder then induces an equivalence ≡SX = vSX ∩ vSX

−1, the “X-similarity.”4

There are hundreds of notions of equivalence in the linear-time branching-time
spectrum [vG90, vG93] that can be characterized in this way. In this section, we use
the framework for the main neighbors of coupled simulation in the spectrum.

2.2.1 Weak Similarity and Weak Simulation Preorder

Weak simulation is a variant of simulation illustrated by Figure 2.1(A). A simulation
maps each state to other states that can do at least as much as it and therefore
“simulate” it. “Simulation” means for a pair of states p, q that, for every α-step that
can be performed in the first state p, the second simulating state q can answer with
a matching step leading to a state that simulates the target of the first step. The
answer part is rendered red in the figure. For weak simulation, the answer may use
the additional freedom of weak steps ·̂⇒ as opposed to just strong steps ·→. Intuitively,
a state p is simulated by q if p cannot expose more behavior than q. More formally:

Definition 2.7 (Weak simulation). A weak simulation is a relation R ⊆ S × S such
that, for all (p, q) ∈ R, p α→p′ implies that there is a q′ such that q α̂⇒q′ and (p′, q′) ∈ R.

The weak simulation preorder relates two states, p vWS q, iff there is a weak
simulation R such that (p, q) ∈ R. Two states are weakly similar, p ≡WS q, iff
p vWS q and q vWS p. The relation ≡WS is called weak similarity.5

Remark 2.8. Another, trivially equivalent, way of expressing the definition would be:
R is a weak simulation iff R−1 α→ ⊆ α̂⇒R−1 for all α ∈ Στ .

4In the following, we omit the system S where it is clear from the context. Also, ·⇒, Σ, etc. are
implicitly instantiated by fixed S. Sometimes we just write “X-simulation” to refer to the preorder.

5 definition Weak_Relations.weak_simulation

8

https://coupledsim.bbisping.de/#phil
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#weak_simulation

p q

=⇒

p′ q′

R

α

R

α̂

A: Weak simulation

p q

=⇒

p′ q′

R

α̂

R

α

B: Weak bisimulation (2)

p q

=⇒

p′ q′

R

~a

R

~a

C: Contrasimulation

p q

=⇒

q′

R

R

D: Coupling

Figure 2.1: Illustration of weak relations on transition systems.

Example 2.9. Some weak simulations on SP:

• R1 = ∅ (the empty relation)

• R2 = ∆S (the identity relation)

• R3 =⇒−1 (the inverted τ -closure)

• R4 = {gA,A} × {gA,A}

• R5 = (R3 ∪R4 ∪ {(Pg,Po), (Po,Pg)})∗

The weak simulation R5 justifies Pg ≡WS Po.
Actually, there is no weak simulation on SP that is greater than R5—that is:

R ⊆ R5 for all weak simulations R. The greatest weak simulation always equals vWS .
So, in this case, R5 = vWS .

Lemma 2.10. The weak simulation preorder can be characterized,

1. by the union:

vWS =
⋃
{R | R is a weak simulation}, and

2. coinductively by the rule:

∀p′, α. p α→ p′ −→ ∃q′. q α̂⇒ q′ ∧ p′ vWS q
′

p vWS q
.

The coinductive characterization under number 2 means that vWS is the greatest
relation R where (p, q) ∈ R locally implies weak simulation for all p, q. For more
material on coinduction, please refer to [San12].

9

Example 2.9 has shown that weak similarity is coarse enough for the gradually
committing philosophers Pg and the one-step committing philosophers Po to be
equivalent. However, the weak simulation preorder is too coarse for many applications
that work with some basic ideas of fairness, namely that all paths matter. It is blind
to spurious deadlocks as illustrated by the following example.

Example 2.11 (Trolled philosophers). Although it is more common for philosophers
to struggle with trolley problems, let us imagine for the sake of the example that our
philosophers, like other scientists [Sch15], are having a troll problem. A hidden troll
() enters the stage of Example 2.6 and might grab the resource sf.

Pt def=
(

s̄f | sf.A | sf.B | sf.C | sf.
)
\ {sf, }

This yields a transition system with one new deadlock node (marked by).

Pt

A
B

C
τ τ

τ
τ

aEats
bEats

cEats

Consider the components of Po and Pt in the same system. The troll state cannot
perform any actions and thus is weakly simulated by all other states. So, the Pt τ→ -
transition can be simulated by any Po τ→-step. As this transition is the only difference
between Po and Pt, weak similarity considers them equivalent Po ≡WS Pt.

For most system models, it indeed is relevant whether a hidden process can block
a choice or not. It matters whether the philosophers starve. Weak similarity is too
coarse to make this differentiation. So, let us look at a finer notion of equivalence.

2.2.2 Weak Bisimilarity

Weak bisimilarity probably is the best-known notion of equivalence for transition
systems with internal steps. It adds a converse requirement to the definition of weak
similarity, which is depicted in Figure 2.1(B).

Definition 2.12 (Weak bisimulation). A weak bisimulation is a relation R ⊆ S × S
such that, for all (p, q) ∈ R,

• p α→ p′ implies that there is a q′ such that q α̂⇒ q′ and (p′, q′) ∈ R, and

• q α→ q′ implies that there is a p′ such that p α̂⇒ p′ and (p′, q′) ∈ R.

Two states are called weakly bisimilar, p ≡WB q, iff there is a weak bisimulation R such
that (p, q) ∈ R. (For bisimulation, equivalence ≡WB and preorder vWB coincide.)

Definition 2.12 says in other words that R is a (weak) bisimulation iff R and R−1

are (weak) simulations.6 Weak bisimilarity is the greatest symmetric weak simulation.
6 lemma Weak_Relations.weak_bisim_weak_sim

10

http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#weak_bisim_weak_sim

Example (2.5, 2.6, 2.11 continued). Returning to our running example, we see that
weak bisimilarity notices the troll so that Po 6≡WB Pt. This is because the troll state

cannot simulate any other state, and thus cannot be covered by any bisimulation
containing (Po,Pt) answering to Pt τ→ .

But weak bisimilarity also notices the differing internal branching structure of
Po and Pg. Po can reach no state with the same set of enabled actions like gBC. So,
Pg τ→ gBC cannot be bisimulated by Po, and thus Po 6≡WB Pg.

The second part of the example shows that weak bisimilarity is too strong for settings
where we need to abstract away from the structure of gradual internal choices. The
next section introduces a remedy: contrasimilarity.

2.2.3 Contrasimilarity and Contrasimulation Preorder

Contrasimulation is a slight modification of simulation, alternating the simulation
direction. The answering process must have a successor state that is simulated by the
target state of the challenging transitions, as shown in Figure 2.1(C). The direction of
the red R is inverse to ordinary simulation. Moreover, challenge and answer may be
words of actions ~a instead of single actions α̂.

Definition 2.13 (Contrasimulation). A contrasimulation is a relation R ⊆ S × S
such that, for all (p, q) ∈ R, p ~a⇒ p′ implies that there is a q′ such that q ~a⇒ q′ and
(q′, p′) ∈ R.7

Pay attention to the swap of sides between p′ and q′ on the right-hand side of
the definition if compared to weak simulation! vC and ≡C are implied as with weak
similarity.

Remark 2.14. Definition 2.13 becomes extensionally weaker if one replaces the oc-
currences of ~a⇒ by α̂⇒.8 If one then replaces the “p α̂⇒ p′” on the left-hand side by
“p α→ p′”, the extension of the definition grows again.9 This is noteworthy because
many other weak simulation-like properties have equivalent definitions with weak and
strong challenge transitions as well as with single step or transition path formulations.

Let us return to our running example.

Example (2.5, 2.6, 2.11 continued II). The differing internal branching structure of
Po and Pg is invisible to contrasimilarity by the same witnesses as for weak similarity.
A visualization of such a (contra-)simulation on SP can be seen in Figure 2.2. The
asymmetric parts of the relation are drawn in red.

Just as weak bisimilarity, contrasimilarity notices the troll so that Po 6≡C Pt. Again,
this is because the troll state cannot simulate any other state, and, consequently,
there cannot be any contrasimulation answer for Pt τ→ .

Contrasimulation shares some lemma schemes with simulation. For example,
contrasimulation and symmetry together also imply for a relation to be a bisimulation.

Proposition 2.15. If R is a contrasimulation and a symmetric relation, then R is a
weak bisimulation.10

7 definition Weak_Relations.contrasim
8 lemma Weak_Relations.contrasim_step_weaker_than_seq
9 lemma Weak_Relations.contrasim_challenge_strength_does_not_imply

10 lemma Weak_Relations.symm_contrasim_implies_weak_bisim

11

http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#contrasim
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#contrasim_step_weaker_than_seq
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#contrasim_challenge_strength_does_not_imply
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#symm_contrasim_implies_weak_bisim

PoPg

gA gBC

A

B

C

τ

τ

τ

aEats

bEats

cEats

τ

τ

τ

τ

τ

R

Figure 2.2: A non-maximal (contra/coupled/weak) simulation on the philosopher
system SP.

Although contrasimulation looks like a variation of simulation, it is in a certain
way “closer” to the symmetry of the greatest bisimulation than weak simulation is.
This is due to the coupling property of contrasimulation, illustrated in Figure 2.1(D):

Proposition 2.16 (Coupling). If R is a contrasimulation, then (p, q) ∈ R implies
there is a q′ such that q⇒ q′ and (q′, p) ∈ R.11

Coupling can be thought of as a relaxed form of symmetry—“weak symmetry” so
to speak. For a relation to be symmetric, R−1 ⊆ R must be true whereas coupling
boils down to R−1 ⊆ ⇒R. In particular, if coupling holds for a relation, it must be
symmetric on the stable states, and τ -free systems only have stable states, so:

Corollary 2.17. If ·→ contains no τ -steps, and R is a contrasimulation, then R is
symmetric and thus a bisimulation.12

Note that there is no analogous proposition for simulation. A weak simulation within
a τ -free system is just a strong simulation, but not necessarily a bisimulation. This
motivates our claim that contrasimulation is, in this respect, “closer to bisimulation”
than weak simulation, even though the two are incomparable in the mathematical
sense.

So, does this close our case? One indeed can argue that contrasimilarity has the
desired properties concerning the transparency of distributed choices and the closeness
to weak bisimilarity. However, it also entails equalities concerning drifting choice
points that will seem strange to people who are not writing parallelizing compilers.

Example 2.18 (Religious philosophers). For centuries, philosophers usually have
been persons of faith. So, maybe they would say a grace before starting their meal
(this example is narrowed down to only two philosophers):

Pr def=
(

s̄f | sf.grace.A | sf.grace.B
)
\ {sf}

11 lemma Weak_Relations.contrasim_implies_coupling
12 lemma Weak_Relations.taufree_contrasim_implies_weak_bisim

12

http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#contrasim_implies_coupling
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#taufree_contrasim_implies_weak_bisim

Pr

rA rB

A B

τ τ

grace grace

aEats bEats

P′r

r′AB

τ
τ

grace

τ τ

R

Figure 2.3: Contrasimulation for religious philosophers.

Interestingly, contrasimilarity does not care whether they say their grace before
or after the acquirement of the resource, as can be seen by the transition system
in Figure 2.3 with additional state P′r (also at https://coupledsim.bbisping.de/
#phil-religious). There, R is a contrasimulation, yielding Pr≡CP′r.

P′r in Figure 2.3 can do quite the same as Pr—with the difference that it may also
postpone the internal choice to r′AB, that is, after the occurrence of grace. Note that
R is no weak simulation. Indeed, there cannot be any mutually relating Pr and P′r
as there is no state that also weakly enables at least as many actions as r′AB (that is,
{aEats,bEats}) and consequently P′r

grace→ r′AB cannot be simulated by Pr.
Example 2.18 already points to the fact that contrasimulation is partly blind to

the structure of internal choice and non-determinism. vC cannot tell the difference
between a non-deterministic choice by visible steps and a deterministic visible step
followed by an internal choice. In a nutshell: Non-determinism of visible steps can be
postponed into internal choice! This is made explicit by the characteristic axiom of
contrasimulation in Voorhoeve and Mauw’s study [VM01] being

a.P + a.Q ≡C a.(τ.P + τ.Q).

Note however that contrasimilarity still is stronger than the well-known weak trace
equivalence when it comes to drifting choices (see [Bel13, Figure 5]). There still are
P,Q such that

a.P + a.Q 6≡C a.(P +Q).

The choice drifting is crucial for compilers that try to analyze which code depends on
what other computations [Bel13]. From the point of view of such a compiler, seeing
that grace is bound to happen either way, it seems perfectly natural to allow it to
occur independently of the internal choice.

But imagine a setting where the grace-event is actually a way to communicate
to the environment that a group of processes has made up their mind on who will
continue a course of action. There, we would have difficulties to accept Pr and P′r to
be congruent.

13

https://coupledsim.bbisping.de/#phil-religious
https://coupledsim.bbisping.de/#phil-religious

2.2.4 Equivalences, Differences, Intersections

Time to wrap up our observations.

• Weak bisimilarity maintains Po 6≡WB Pg. It is too strong to ignore the distribu-
tion of choices.

• Weak similarity considers Po ≡WS Pg, but also Po ≡WS Pt. It is so far away
from weak bisimilarity that it is oblivious to spurious deadlocks. Still, it respects
the temporal order of internal choices and visible actions, Pr 6≡WS P′r.

• Contrasimilarity also considers Po ≡C Pg, and indeed maintains that Po 6≡C Pt.
But, strangely, Pr ≡C P′r. It partially allows internal choices and external
behavior to be drifted. This breaks some intuitive temporal assumptions we
might hold about our models. Moreover, contrasimilarity is unwieldy when it
comes to proofs due to its definition in terms of transition sequences instead of
single weak transitions.

So, if one looks for a notion of equivalence ≡X , where distributed choice is transparent
(Po ≡X Pg), while deadlocks and temporal drifts are noticed (Po 6≡X Pt and Pr 6≡X P′r),
one will have to turn to some equivalence in the intersection of ≡WS and ≡C while
staying coarser than ≡WB. This is what we shall do in Chapter 3—coupled similarity
is precisely the intersection of ≡WS and ≡C .

If the application demands it, some other refinements for notions of equivalence
can easily be added on top. Classical examples include the preservation of some state
property such as stability or divergence. For instance, a behavioral preorder v∆X is
divergence respecting iff p v∆X q implies that, if p diverges, then q does so too.

2.3 Axiomatizations
An important way of characterizing notions of equivalence in the context of process
calculi is in terms of complete axiomatizations. These consist of sets of equational laws
on process terms that equate two processes precisely when the corresponding notion
of equivalence is meant to. Axiomatizations are of particular interest to us because
the complete axiomatization of coupled similarity by Parrow and Sjödin [PS94]
hints at the possibility of employing the axiomatization for a decision algorithm. This
section introduces the concept of axiomatization for weak bisimilarity.

2.3.1 Soundness and Completeness

An axiomatization A is a set of equational laws that can be used to rewrite terms
by substituting subterms accordingly. Expressions P and Q are considered equal
if they can be transformed into one-another, for which we write A ` P = Q. The
correspondence between an axiomatization and an equivalence is understood in terms
of soundness and completeness.

Definition 2.19. With respect to an equivalence ≡X , an axiomatization A is

sound iff A ` P = Q implies P ≡X Q, and

complete iff P ≡X Q implies A ` P = Q.

14

Soundness virtually always requires ≡X to be a congruence (with respect to the
operators occurring in A) and the A-laws to be valid.

Definition 2.20. An equivalence ≡X on expressions is a congruence for an n-ary
operator op iff pi ≡X qi for i ∈ {1, . . . , n} implies op(p1, . . . , pn) ≡X op(q1, . . . , qn).

If we let a preorder vX take the place of ≡X in the definition, we say that vX is
a precongruence and that op is monotone with respect to vX .

Once soundness is established, it usually becomes feasible to justify a normalization
procedure on terms in order to prove completeness.

2.3.2 Axiomatizing Weak Bisimilarity

Milner [Mil89, 7.4f.] provides a complete axiomatization for weak bisimilarity on
finite-state CCS processes.

A process expression is called finite-state iff it only consists of prefix, choice, process
names, and a 0-process. If it additionally lacks recursion, then the process is called
finite. Finite-state processes are isomorphic to finite transition systems, and finite
processes correspond to acyclic finite transition systems.

To be exact, the axiomatization does not work with ordinary weak bisimilarity,
but with rooted weak bisimilarity. This is because weak bisimilarity is no congruence
for the operators of CCS.

Example 2.21. τ.0 ≡WB 0 and a ≡WB a, but τ.0 + a 6≡WB a.

The example shows that ≡WB is no congruence with respect to the operator +.
In its place, we need to use rooted weak bisimilarity, which is often called “weak
bisimulation congruence.”

Definition 2.22 (Rooted weak bisimilarity). Two states are rooted weakly bisimilar,
written p ≡WBc q, iff

1. for all p′ and α with p α→ p′, there is a q′ such that q α⇒ q′ and p′ ≡WB q′, and

2. for all q′ and α with q α→ q′, there is a p′ such that p α⇒ p′ and p′ ≡WB q′.

In contrast to weak bisimilarity, rooted weak bisimilarity requires that initial
τ -steps are bisimulated by at least one real τ -step (and not stuttering). After that,
the definition falls back to standard weak bisimilarity ≡WB. The result is slightly finer
than weak bisimilarity, ≡WBc ⊆ ≡WB.

This minimal deviation from the original requirements of ≡WB actually is enough
to transform weak bisimilarity into a congruence for finite-state CCS processes. Exam-
ple 2.21 is solved because τ.0 6≡WBc 0.

Definition 2.23 (≡WBc axioms). We define the following axiom system AWB:

AC1 P +Q = Q+ P

AC2 P + (Q+R) = (P +Q) +R

AC3 P + P = P

AC4 P + 0 = P

AT1 α.τ.P = α.P

AT2 P + τ.P = τ.P

AT3 α.(P + τ.Q) = α.(P + τ.Q) + α.Q

15

The laws AC1–AC4 are quite straight-forward axioms for the choice operator.
They are valid because the corresponding nodes in transition systems according to the
operational CCS semantics (Definition 2.4) have identical outgoing transitions.

The laws AT1–AT3 are referred to as the “τ -laws.” They capture the intuition
that the observer of a system cannot tell how much internal activity occurs between
visible activity. They as well are valid for ≡WBc .

While soundness of the laws is not really a problem, completeness takes some proof
effort. The proof relies on a normalization of process terms into WB-normal forms
(“full standard forms” in [Mil89]), and this normalization is what is of real interest to
us in our pursuit of decision procedures for process equalities.

Definition 2.24 (WB-normal form). A process term P is in WB-normal form iff

1. it has the structure P = α1.P1 + α2.P2 + . . .+ αn.Pn (or P = 0),

2. every Pi is in WB-normal form, and

3. P α⇒ P ′ implies there is an i such that αi = α and Pi = P ′.

Every finite process can soundly be rewritten into such a normal form using a
method of saturation [Mil89], adding all the implied weak transitions as explicit process
prefixes. With slight modifications, this applies to finite-state processes also.

On the transition systems of such normal forms weak and strong steps coincide,
that is, ·⇒ = ·→. Consequently, weak bisimilarity ≡WB and strong bisimilarity ≡B

almost match. The trick to make them match exactly is adding τ -loops to every
state. This addition is transparent to weak bisimilarity (though not to rooted weak
bisimilarity), and creates transition systems where ·̂⇒ = ·→ and thus ≡WB =≡SB.

This illustrates how normalization procedures in completeness proofs often justify
how to rewrite models such that the equivalence coincides with strong bisimilarity on
the result system. The proofs tell us how to reduce deciding one notion of equivalence
to deciding strong bisimilarity, which is a common approach (cf. Aceto et al. “The
algorithmics of bisimilarity” [AIS11]).

For weak bisimilarity, one might argue that it is obvious to reduce the problem
to strong bisimilarity on ·̂⇒ by computing the weak transition relation. For coupled
similarity however, we are going to encounter a not-so-obvious reduction in Section 4.2
based on an axiomatization we discuss in Section 3.3.

2.4 Game-Theoretic Characterizations
There is a tradition of characterizing logics in terms of specialized two-player games
with perfect information [Hod13]. Notions of equivalence correspond to certain modal
logics describing observations on systems [vG93]. In this light, it comes as no surprise
that notions of (bi-)similarity can also be expressed in terms of games. We here
introduce simple games in the spirit of the “finite games” from [Grä07], but we will
not demand finiteness for now. We then cite the characterizations of weak similarity
and bisimilarity as a preparation for our characterization of coupled similarity in
Section 3.4.

16

2.4.1 Simple Games

Checking whether two states are related by a (bi-)simulation preorder vX can also
be seen as a game along the lines of coinductive characterizations like the one in
Lemma 2.10. One player, the attacker, challenges that p vX q, while the other player,
the defender, has to name witnesses for the existential quantifications of the definition.
For the preorders discussed here, quite simple games suffice.

Definition 2.25 (Simple games). A simple game G[p0] consists of

• a (countable) set of game positions G,

– partitioned into a set of defender positions Gd ⊆ G

– and attacker positions Ga :=G\Gd,

• and a graph of game moves � ⊆ G×G,

where p0 ∈ G names an initial position.13

The positions Ga and Gd specify whose turn it is.

Definition 2.26 (Plays and wins). We call the paths p0p1... ∈ G∞ with pi� pi+1

plays of G[p0]. The defender wins all infinite plays. If a finite play p0 . . . pn is stuck,
that is, if pn 6�, then the stuck player loses: The defender wins if pn ∈ Ga, and the
attacker wins if pn ∈ Gd.

A strategy tells a player how to win. For our purposes, we are only interested in
the winning strategies of the defender.

Definition 2.27 (Strategies and winning strategies). A defender strategy is a (usually
partial) mapping from initial play fragments to next moves f ⊆ {(p0...pn, p

′) | pn ∈
Gd ∧ pn� p′}. A play p follows a strategy f iff, for each move pi� pi+1 with pi ∈ Gd,
pi+1 = f(p0...pi). If every such play is won by the defender, f is a winning strategy
for the defender. The player with a winning strategy for G[p0] is said to win G[p0].

Definition 2.28 (Winning regions and determinacy). The winning region Wσ of
player σ ∈ {a, d} for a game G is the set of states p0 from which player σ wins G[p0].
We call G determined if G = Wd ∪Wa.

Proposition 2.29. All simple games are determined.

Proof. (Sketch) The winning condition for the defender from Definition 2.26 obviously
is a safety property (“Don’t run into certain deadlocks.”). Safety properties correspond
to closed sets of plays. The Gale–Stewart theorem guarantees games that have
closed sets as winning conditions to be determined.

2.4.2 Characterizing Weak Similarity and Bisimilarity with
Games

The coinductive characterization of vWS in Lemma 2.10 can easily be transformed
into a simple game [Sti93]. We skip the proofs for this. They are not so different from
what we shall do for coupled similarity in Section 3.4 in more detail.

13 locale Simple_Game.simple_game

17

http://coupledsim.bbisping.de/isabelle/Simple_Game.html#simple_game

(p, q)a

(α, p′, q)d

(p′, q′)a(q, p)a

[p α→ p′]
[q α̂⇒ q′]

Figure 2.4: Schematic weak (bi-)simulation game.

Definition 2.30 (vWS game). The weak simulation game GWS [p0] = (G,Ga,�, p0)
for a transition system S = (S,Στ ,→) consists of

• attacker nodes (p, q)a ∈ Ga with p, q ∈ S, and

• defender nodes (α, p, q)d ∈ Gd for situations where a simulation challenge has
been formulated,

and two kinds of moves

• challenges (p, q)a�(α, p′, q)d if p
α→ p′, and

• answers (α, p′, q)d�(p′, q′)a if q
α̂⇒ q′.

The right-hand side of Figure 2.4 (the black part) gives a schematic illustration of
this game. The square nodes represent kinds of attacker positions, and the circle nodes
kinds of defender positions. Arrows stand for schematic game moves. The dashed
positions are places where the game returns to attacker positions of the initial kind,
but with a new variable assignment.

Proposition 2.31. The defender wins GWS [(p, q)a] precisely if p vWS q.

GWS can easily be extended with swaps of sides to establish symmetry of the char-
acterized relation, thus capturing weak bi-similarity. Symmetry swaps are represented
by the blue part of Figure 2.4.

Definition 2.32 (≡WB game). The weak bisimulation game GWB for a transition
system S = (S,Στ ,→) is just GWS with one additional kind of moves:

• symmetry swaps (p, q)a�(q, p)a.

This means that the attacker, where they see fit, can choose to attack on the
right-hand side instead of only the left-hand side.

Proposition 2.33. The defender wins GWB[(p, q)a] precisely if p ≡WB q.

Such games are sufficiently simple for algorithms on them to also be quite simple.
That is why they can serve as a nice intermediate level of abstraction for algorithms
computing behavioral equivalence relations. The details of this are provided in
Section 4.4.

18

Chapter 3

Coupled Simulation

Coupled similarity strikes a deal between a lot of nice properties of weak similarity,
contrasimilarity, and weak bisimilarity. As visualized in Figure 1.1, it sits right in the
middle between them.

We here introduce relational, axiomatic and game-theoretic characterizations of
coupled similarity and its preorder, which turn into algorithms in the next chapter.
We moreover prove properties of the coupled simulation preorder that justify tricks in
the algorithms of the next chapter.

3.1 Definitions of Coupled Simulation
A multitude of definitions for coupled simulation and coupled similarity have been
proposed. Our thesis uses the coupled simulation presented by Rob van Glabbeek
[vG17]. This section introduces the definition from [vG17] and compares it to other
pre-existing notions of coupled simulation. Such a survey seems advisable because,
over the years, there have been varying formulations of coupled simulation, which, to
some extend, also differ in range.

3.1.1 Coupled Simulation [vG17]

Van Glabbeek’s definition just merges the properties weak simulation and coupling
familiar from Figure 2.1.

Definition 3.1 (Coupled simulation). A coupled simulation is a relation R ⊆ S × S
such that, for all (p, q) ∈ R,

• p α→ p′ implies there is a q′ such that q α̂⇒ q′ and (p′, q′) ∈ R (simulation), and

• there exists a q′ such that q⇒ q′ and (q′, p) ∈ R (coupling).

The coupled simulation preorder relates two processes, p vCS q, iff there is a coupled
simulation R such that (p, q) ∈ R. Coupled similarity relates two processes, p ≡CS q,
iff p vCS q and q vCS p.1

Example 3.2 (Chapter 2 examples). As the relation R on the philosopher system
SP from Figure 2.2 is a weak simulation, it fulfills the first condition of Definition 3.1.

1 definition Coupled_Simulation.coupled_simulation

19

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupled_simulation

Because it also is a contrasimulation, and thus a coupling by Proposition 2.16, it lives
up to the second condition. Consequently, R is a coupled simulation, and Pg ≡CS Po.

The formulation of coupled simulation implying weak simulation directly yields
that there cannot be a coupled simulation where there cannot be a weak simulation.
This, for example, implies that choice drifting from Example 2.18 is distinguished, and
Pr 6≡CS P′r for the variants of the religious philosophers.

The demand for coupling, on the other hand, detects the troll from Example 2.11.
The -state does not simulate any other state and has no τ -successors and therefore
cannot be coupled. So, the Pt τ→ -transition cannot be simulated by Po, which
warrants Po 6≡CS Pt.

The example demonstrates right away that the coupled simulation preorder and
coupled similarity fit our bill outlined in the previous chapter. We shall dive deeper
into their properties in Section 3.2. Let us first continue our survey of definitions for
coupled simulation from the literature.

3.1.2 Stability-Coupled Simulation [PS92, PS94]

The historically first definition of coupled simulation is due to Parrow and Sjödin
[PS92, PS94]. It works with two simulations that are coupled at the stable states. It is
nowadays referred to as “S-coupled simulation” (for example in [San12]).

Definition 3.3 (S-coupled simulation). An S-coupled simulation is a pair of weak
simulations R1,R−1

2 ⊆ S × S, which are mutually “S-coupled” (not in the sense of
the previous sections!) at the stable states, that is:

• (p, q) ∈ R1 and p stable implies (p, q) ∈ R2, and

• (p, q) ∈ R2 and q stable implies (p, q) ∈ R1.

S-coupled similarity relates two processes, p ≡SCS q, iff there is an S-coupled simulation
(R1,R2) such that (p, q) ∈ R1 ∩R2.

S-coupled similarity on states of divergence-free systems is an equivalence relation.
However, S-coupled similarity is no fit notion of equivalence for general systems, that
may contain divergences.

Example 3.4 (≡SCS lack of transitivity). Consider the transition system given in
Figure 3.1 (example from [PS94, p. 567]). We have p1 ≡SCS q1 and q1 ≡SCS r1 but
p1 6≡SCS r1. So, ≡SCS is not transitive and thus not an equivalence relation.

Note that coupled similarity, as we defined it in Subsection 3.1.1, does not suffer
from this shortcoming. It maintains that q1 66≡CS r1 because it also demands coupling
on q4.

The example shows that ≡SCS and ≡CS actually are different notions. Still, for
many systems, they match.2

Lemma 3.5. If S is a divergence-free system, then, provided that p and q are equally
stable (“stability-rooted”), p ≡SCS q if and only if p ≡SSCS q.3

2[PS94] and [San12] claim a variant of this to hold without the assumption of shared stability.
Following the construction from [San12], our Isabelle proof still needs this extra assumption and it is
not obvious how to dispose of it.

3 theorem Coupled_Simulation.divergence_free_coupledsims_coincidence

20

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#divergence_free_coupledsims_coincidence

p1

p2

p3

p4

a

b

a
q1

q2

q3

q4

a

b

a

τ

r1

r2

r3

a

b

Figure 3.1: Processes for Example 3.4.

So, in the absence of divergence, stability-rooted S-coupled similarity has the nice
properties of coupled similarity we shall discuss in Section 3.2. The literature suggests
that these are precisely the cases where S-coupled similarity is useful. Consequently,
it seems wise to consider S-coupled similarity just as an alternative characterization of
coupled simulation for these special cases. But even then, it usually is not as handy
as [vG17]-coupled simulation, which motivates our choice of the latter over the first.

3.1.3 Coupled Simulation Using Pairs [PS94, San12]

The conclusion section of [PS94] already discusses the problems of S-coupled similarity
in the face of divergences and proposes “weakly coupled simulation” as a remedy. This
proposal is what usually is meant with the name “coupled simulation” since [PS94],
for example in [San12, NP00, Ren00]. To avoid confusion with Definition 3.1, let us
call this definition pair-based coupled simulation.

Definition 3.6 (Pair-based coupled simulation). A pair-based coupled simulation is a
pair of weak4 simulations R1,R−1

2 ⊆ S × S that are mutually coupled, that is:

• (p, q) ∈ R1 implies there is q′ with q⇒ q′ and (p, q′) ∈ R2, and

• (p, q) ∈ R2 implies there is p′ with p⇒ p′ and (p′, q) ∈ R1.

The difference to Definition 3.3 is that coupling now is phrased like in Definition
3.1 and required not only on the stable states.

It turns out that this concept of coupled simulation has some inherent redundancy
and coincides with single-relation coupled simulation as presented in Definition 3.1.

Lemma 3.7. The pair-based definition and van Glabbeek’s definition of coupled
similarity coincide.

• If R is a [vG17]-coupled simulation, then (R,R−1) is a pair-based [San12]-
coupled simulation.5

4[PS94, San12] here just speak of “simulation”, not “weak simulation.” But, from their examples
and lemmas, it seems reasonable to read a “weak” into their definitions. [NP00] explicitly requires
weak simulations. [Ren00] points out that actually requiring finer delay simulations is enough. Delay
simulations are like weak simulations with ⇒ a→ instead of ⇒ a→⇒ in the visible simulation answer.
More on this in Subsection 3.2.2.

5 lemma Coupled_Simulation.coupledsim_gla17_resembles_sangiorgi12

21

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_gla17_resembles_sangiorgi12

• If (R1,R2) is a pair-based [San12]-coupled simulation, then R1 ∪ R−1
2 is a

[vG17]-coupled simulation.6

In this light, the label “weakly coupled” from [PS94] has to be considered extremely
misleading. In Example 3.4, we already encountered a situation where the allegedly
“weakly coupled” simulation actually requires more coupling than S-coupled simulation.

Coupled simulations with two relations are considered more tedious for proofs
than ordinary simulations and bisimulations [San12, p. 179]. This might be one of the
reasons why coupled simulations have not been widely used up to now. Fortunately,
van Glabbeek’s definition [vG17] is more convenient.

3.1.4 Barbed and Reduction Coupled Simulation [PvG15]

Fournet and Gonthier [FG05] as well as Peters and van Glabbeek [PvG15]
present a variation of coupled simulation for reduction semantics, that is, for systems
where all transitions are τ -labeled, and other properties of reachable states matter.

Definition 3.8 (Reduction coupled simulation). A reduction coupled simulation is a
relation R ⊆ S × S such that, for all (p, q) ∈ R and p′ with p⇒ p′,

• there exists a q′ such that q⇒ q′ and (p′, q′) ∈ R, and

• there exists a q′ such that q⇒ q′ and (q′, p′) ∈ R.

This property of R is meant to be accompanied by some further constraints, for
instance to respect barbs. Then, it can be used to generate notions of reduction
coupled similarity.

As one would hope, given that [PvG15] and [vG17] share an author, reduction
coupled simulation indeed is a special case of the coupled simulation definition we are
using in this thesis.

Lemma 3.9. For reduction-semantical transition systems, Definition 3.8 and Defini-
tion 3.1 have the same extension.

• Every [vG17]-coupled simulation also is a [PvG15]-reduction-coupled simula-
tion.7

• If a system only has τ -transitions, then every [PvG15]-reduction-coupled simu-
lation also is a [vG17]-coupled simulation.8

Interestingly, Theorem 4 of [FG05] shows that barbed reduction coupled similarity
and fair testing equivalence coincide for the local π-calculus. The local π-calculus is
a distributable variant of the π-calculus where processes may not receive on free or
received names. Two processes p, q are fair testing equivalent iff, for every context and
barb, all successors of p may reach the barb precisely if all reachable successors of
q may. We note this because it points to the fact that coupled similarity may come
close to or even touch the—usually coarser—world of testing equivalences.

6 lemma Coupled_Simulation.coupledsim_sangiorgi12_impl_gla17
7 lemma Coupled_Simulation.coupledsim_gla17_implies_gp15
8 lemma Coupled_Simulation.coupledsim_gp15_implies_gla17_on_tau_systems

22

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_sangiorgi12_impl_gla17
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_gla17_implies_gp15
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_gp15_implies_gla17_on_tau_systems

3.1.5 Coupled Simulation as Special Contrasimulation?

The standard definitions of coupled simulation introduce it as a special brand of
simulations. But coupled simulation also is a special case of contrasimulation.9 Indeed,
coupled simulation (as defined in Definition 3.1) is precisely the intersection of the
two concepts. (So, Figure 1.1 from the introduction does not only relate equivalences,
“similarities”, but already simulation relations.) The “surprising” direction of this,
actually is quite obvious in the light of the coupling property (Proposition 2.16) of
contrasimulation.

Lemma 3.10. R is a coupled simulation precisely if R is a weak simulation and a
contrasimulation.10

Now, it suggests itself to look for a concise characterization of coupled simulation
in terms of contrasimulation. In the literature, there seems to be only one instance
where this has been tried. Voorhoeve and Mauw’s tech report on contrasimilarity
[VM00] defines coupled simulation as a special case of contrasimulation (notation
adapted):

“A coupled simulation is a contrasimulation R satisfying
{x | ∃y.(x, y) ∈ R} = {y | ∃x.(x, y) ∈ R}.”

Unfortunately, this characterization is too weak. For instance, consider the contrasim-
ulation R on the religious philosopher system from Figure 2.3. Its reflexive closure
R ∪∆S still is a contrasimulation11 and matches the definition. But it is no weak
simulation and thus no coupled simulation by the arguments from Example 2.18.

So, whatever it is [VM00] is defining, it is not compatible with the common notions
of coupled simulation, which all require coupled simulations to be weak simulations.
In the journal version [VM01], the definition of coupled simulation has been dropped.

The previous reasoning also disproves Kučera and Schnoebelen’s Remark 6 of
[KS06] that contrasimulation and coupled simulation would coincide on divergence-free
processes—the transition system in Figure 2.3 is divergence-free.

In summary, there appears to exist some confusion concerning the exact relationship
of coupled simulation and contrasimulation. It would be interesting to look deeper
into this, but that is beside the point of this thesis.

3.2 Properties of Coupled Similarity
The coupled simulation preorder has a few characteristics that render it quite suited
for proofs and models. Some of them are particularly relevant for our algorithms in
the following chapter. From now on, we stick to coupled simulation as specified in
Definition 3.1. Results nonetheless carry over to the other definitions according to the
established coincidences.

3.2.1 Order Properties and Coinduction

The coupled simulation preorder vCS has the properties everyone expects from a
decent notion of equivalence.

9 lemma Coupled_Simulation.coupledsim_implies_contrasim
10 lemma Coupled_Simulation.coupled_simulation_iff_weak_sim_and_contrasim
11 lemma Weak_Relations.contrasim_union,contrasim_reflexive

23

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_implies_contrasim
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupled_simulation_iff_weak_sim_and_contrasim
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#contrasim_union,contrasim_reflexive

Lemma 3.11. vCS forms a preorder, that is, it is reflexive12 and transitive.13 As a
consequence, coupled similarity ≡CS is an equivalence relation.14

Coupled simulation is closed under set union,15 and the coupled simulation preorder
is itself a coupled simulation16 (and thus the greatest coupled simulation).

Lemma 3.12. The coupled simulation preorder can be characterized,

1. by the union:

vCS =
⋃
{R | R is a coupled simulation}, and

2. coinductively17 by the rule:18

∀p′, α. p α→ p′ −→ ∃q′. q α̂⇒ q′ ∧ p′ vCS q
′ q⇒ q′ q′ vCS p

p vCS q
.

Especially the coinductive characterization is important because it allows to conduct
proofs for p vCS q between some states p and q coinductively. For this thesis, it also
plays an important role in motivating the following game characterization (Section 3.4)
and algorithms (Sections 4.3ff.).

3.2.2 Strengthening Coupled Simulation

Like weak similarity and bisimilarity, yet unlike contrasimilarity, coupled similarity
can be defined with a weaker formulation of the simulation challenge.

Lemma 3.13. The “p α→ p′” on the left-hand side of the simulation property from
Definition 3.1 may be replaced by “p α̂⇒p′” while the extension of the definition remains
the same.19

This is a logically stronger formulation of coupled simulation, which is helpful
when coupled simulation appears as a premise in a proof.

Coupled similarity can also be defined employing an effectively stronger concept
than weak simulation, namely delay simulation. Delay simulations are defined in
terms of a “shortened” weak step relation α̂=. where τ̂=. :=⇒ and â=. :=⇒ a→. So the
difference between â=. and â⇒ lies in the fact that the latter can move on with τ -steps
after the strong a→-step in its construction.

Definition 3.14 (Coupled delay simulation). A coupled delay simulation is a relation
R ⊆ S × S such that, for all (p, q) ∈ R,

• p α→ p′ implies there is a q′ such that q α̂=. q′ and (p′, q′) ∈ R (delay simulation),

• and there exists a q′ such that q⇒ q′ and (q′, p) ∈ R (coupling).
12 lemma Coupled_Simulation.coupledsim_refl
13 lemma Coupled_Simulation.coupledsim_trans
14 lemma Coupled_Simulation.coupled_similarity_equivalence
15 lemma Coupled_Simulation.coupledsim_union
16 lemma Coupled_Simulation.coupled_sim_by_is_coupled_sim
17 coinductive Coupled_Simulation.greatest_coupled_simulation
18 lemma Coupled_Simulation.gcs_eq_coupled_sim_by
19 lemma Coupled_Simulation.coupled_simulation_weak_premise

24

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_refl
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_trans
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupled_similarity_equivalence
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_union
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupled_sim_by_is_coupled_sim
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#greatest_coupled_simulation
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#gcs_eq_coupled_sim_by
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupled_simulation_weak_premise

The only difference to Definition 3.1 is the use of α̂=. instead of α̂⇒. As α̂=. ⊆ α̂⇒,
every coupled delay simulation is a coupled simulation. However, not every coupled
simulation also is a delay (coupled) simulation.20 So, Definition 3.14 is not simply a
stricter formulation, but indeed extensionally smaller than coupled simulation. Still,
the greatest coupled simulation vCS is a delay coupled simulation so that we can add
the following characterization of the coupled simulation preorder.

Lemma 3.15. p vCS q precisely if there is a coupled delay simulation R such that
(p, q) ∈ R.21

Rensink [Ren00] uses a definition for pair-based coupled simulation that is based
on delay steps as well. For action-labeled coupled simulation on a single relation, the
delay simulation approach seems not to have been used up to now, which is why we
refrain from taking delay coupled simulations as canonical coupled simulations here.

By any account, it is a nice property because it means that algorithms (and proofs)
do not have to bother with the extra load of fuzziness caused by the trailing τ -steps
of ·̂⇒. Once symmetry is demanded instead of coupling, delay simulation and weak
simulation lead to different notions of equivalence, namely delay bisimilarity and weak
bisimilarity. Delay bisimilarity is strictly stronger and has important use cases, for
example, applicative bisimulation on the λ-calculus [Pit11].

3.2.3 Internal Steps and Choice

The coupled simulation preorder is conceptionally linked to the internal choice structure
of a system. One basis for this is that it contains the inverted τ -closure of the transition
system.

Lemma 3.16. If q⇒ p, then p vCS q.22

Intuitively, this is logical from the weak simulation nature of coupled similarity: p
can obviously do at least as much as its τ -successor q, because it can perform a τ -step
and then steal the abilities from q. And due to the reflexive nature of vCS , q can
answer its own coupling challenge.

A direct implication is that strongly connected τ -components are coupled-similar:

Corollary 3.17. If p and q are on a τ -cycle, that means p⇒ q and q ⇒ p, then
p ≡CS q.23

This corollary is a commonplace property of equivalences in the linear-time branch-
ing-time spectrum with silent actions. Weak equivalences usually allow for internal
steps before answering a challenge. Therefore, if p⇒ q and q⇒ p, then p and q can
steal the transitions from each other when equivalence is questioned.

What does it mean, if we know for an internal choice between p and q that p vCS q?
Interestingly: that there is no real choice.

Lemma 3.18. Let pqu ∈ S such that pqu
α→ pq′ if and only if α = τ and pq′ ∈ {p, q}.

Then, p vCS q if and only if pqu ≡CS q.24

20Consider for example R = {(a.τ, a.τ), (τ,0), (0, τ), (0,0)}.
21 lemma Coupled_Simulation.coupled_sim_by_eq_delay_coupled_simulation
22 lemma Coupled_Simulation.coupledsim_step
23 lemma Coupled_Simulation.strongly_tau_connected_coupled_similar
24 lemma Coupled_Simulation.coupledsim_choice_join

25

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupled_sim_by_eq_delay_coupled_simulation
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_step
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#strongly_tau_connected_coupled_similar
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_choice_join

We formulated the lemma for transition systems, borrowing the symbol u commonly
used for internal choice in the process calculus Communicating Sequential Processes
(CSP). In CCS, the lemma would read

P vCS Q if and only if τ.P + τ.Q ≡CS Q.

This is to say, internal choice acts as a least upper bound (join) in the (CCS,vCS)
semi-lattice with ≡CS as equality.

Ordinary coupled simulation is blind to divergence. In particular, it cannot
distinguish two states whose outgoing transitions only differ in an additional τ -loop at
the second state.

Lemma 3.19. p ≡CS q if q
·→ · = p

·→ · ∪ {(τ, q)}.25

This lemma, together with the τ -cycle compression from Corollary 3.17, allows to
convert finite systems with divergence into ≡CS -equivalent systems without divergence,
thereby bridging the gap between ≡CS and ≡SCS .

The previous lemmas stem from the weak simulation nature of vCS . However,
adapting words from [vG17], p vCS q does not only mean that “p is ahead of q” (weak
simulation, Lemma 3.16ff.), but also that “q can catch up to p” (coupling).

The important property of coupled similarity setting it apart from weak similarity
is that it enforces more symmetry:

Lemma 3.20. Assume S is finite and has no τ -cycles. Then p vCS q and p α̂⇒ p′

with stable p′ imply there is a stable q′ such that q α̂⇒ q′ and p′ ≡CS q
′.26

In other words: If we ignore intermediate instable internal choice points and only
consider ·̂⇒-steps leading to τ -maximal states, coupled similarity virtually resembles
weak bisimilarity on finite divergence-free systems. The next section looks at the
connection of weak bisimilarity and coupled similarity in more depth.

3.3 Axiomatization of Coupled Similarity
One of the most important works on coupled similarity is Parrow and Sjödin’s “The
complete axiomatization of Cs-congruence” [PS94]. They provide an axiomatization of
≡SCS -congruence for finite CCS processes, which is based on Milner’s axiomatization
of ≡WB [Mil89], we reported in Section 2.3.

3.3.1 Coupled Simulation Congruence

Coupled similarity is no congruence with respect to the CCS choice operator. It
suffers from the same shortcoming as weak bisimilarity in Example 2.21, namely that
τ.0 ≡CS 0 and a ≡CS a, but τ.0 + a 6≡CS a.27 However, its largest CCS congruence
has a nicer characterization than the special treatment for initial τ -steps of rooted
weak bisimilarity in Definition 2.22.

25 lemma Coupled_Simulation.coupledsim_tau_loop_ignorance
26 lemma Coupled_Simulation.coupledsim_eventual_symmetry
27On CCS descendants without the expressive power of +, ≡CS usually is a congruence. One

important example is the asynchronous π-calculus [NP00, Prop. 2.4.4].

26

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_tau_loop_ignorance
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_eventual_symmetry

Definition 3.21 (Rooted coupled similarity). Two states are rooted coupled similar,
written p ≡CSc q, iff p ≡CS q, and p stable precisely if q stable.

Proofs that ≡CSc indeed is a congruence and that it is the largest one can be
found in [San12]. Lemma 3.5 already yields that ≡CSc matches the congruence [PS94]
similarly derives from ≡SCS on finite processes because their transition systems are
cycle-free and finite-state, and hence divergence-free. Therefore, the axiomatization
from [PS94] for ≡SCS -congruence is just as well an axiomatization for ≡CSc . Now, let
us have a look at the axiomatization.

3.3.2 A New τ-Law

Coupled similarity is coarser than weak bisimilarity. In order to be complete, its
axiomatization must declare more processes to be equal than the weak bisimilarity
axiom system AWB (Definition 2.23).

Definition 3.22 (≡CSc axioms). We define ACS as an extension of AWB from
Definition 2.23 with the new law

CS τ.(τ.P +Q) = τ.P +Q.

The axiom basically says that τ -steps to instable states can be skipped.

Example 3.23. If we encode the philosopher transition system Pg from Example 2.5
as a finite-state process, we can rewrite it using CS to match Po.

Pg
(encode)
≡B τ.τ.A + τ.(τ.B + τ.C)
CS= τ.τ.A + (τ.B + τ.C)

AT1= τ.A + τ.B + τ.C
(encode)
≡B Po

The example shows that ACS is sufficiently complete to cover that Pg ≡CS Po.
But is it completely complete?

3.3.3 CS-Normalization

To prove completeness for finite CCS processes, [PS94] adapts Milner’s WB-normal
form (Definition 2.24). The crucial trick is to include a closure over the partial choices
of instable choice points.

Definition 3.24 (CS-normal form). A process term P is in CS-normal form iff

1. it has the structure P = α1.P1 + . . .+ αn.Pn (or P = 0),

2. every Pi is in CS-normal form,

3. P α⇒ P ′ implies there is an i such that αi = α and Pi = P ′,

4. new: if αi = τ for some i, then Pi is stable, and

5. new: whenever Pi = β1.Q1 + . . .+ βm.Qm for some i with βj = τ for some j,
then for every partial choice P̂ = Q̂1 + · · ·+ τ.Qj + · · ·+ Q̂m of Pi
where Q̂k ∈ {0, βk.Qk} for all k 6= j, there is some l such that the l-th branch of
P is CS-congruent to the partial choice, that is, Pl ≡CSc P̂ with αl = αi.

27

Conditions 1, 2, and 3 are identical to WB-normal forms from Definition 2.24.
Condition 4 is in line with the property of coupled similarity that τ -steps to instable
states can be skipped. Condition 5 then demands the presence of all partial commits
that could be hidden in the trailing ⇒-part of a weak visible transition. We shall
return to the properties of such normal forms in Definition 4.5, where there also is an
illustration of how a transition system changes with normalization in Figure 4.1.

On CS-normal forms, coupled similarity and weak bisimilarity coincide.

Lemma 3.25. If P and Q are CS-normal forms, then P ≡CS Q precisely if P ≡WB Q,
(and P ≡CSc Q precisely if P ≡WBc Q). (Proof cf. Lemma 20 in [PS94].)

Moreover, every finite CCS processes can be rewritten to a CS-normal form
(Lemma 18 in [PS94]). As Parrow and Sjödin’s induction proof for this makes use
of the reference to ≡CSc for a structurally smaller term in clause 5 of the definition,
the implied normalization is recursive.

Parrow and Sjödin conjecture that their normalization and the completeness
proof can be extended to finite-state processes by adding the recursion laws from
[Mil89]. Because this would enable divergent processes, one would have to use the
variant of coupled similarity that remains an equivalence relation in this case (Definition
3.1.3). However, they do not elaborate on the question what consequences recursion
would have on the normal forms. Due to condition 3, CS-normal forms cannot be
divergent processes. We shall deal with this problem in Section 4.2.

3.3.4 Axiomatization in CSP

As a side note, let us mention that coupled similarity in its divergence-sensitive
flavor ≡∆CS (cf. final remark in Subsection 2.2.4) is a congruence for the wide-spread
process calculus CSP. In particular, van Glabbeek [vG17] shows that v∆CS is a
precongruence for “all”28 CSP operators except for action prefixing and the related
throw operator, for which, nevertheless, ≡∆CS is a congruence. He moreover gives a
complete axiomatization of ≡∆CS within recursion-free CSP without interrupts. Most
relevant laws of the standard CSP axiom set are provable from van Glabbeek’s axiom
system. This shows that many of the intuitions behind the interplay of synchronizations
and choices that lie behind the design of CSP correspond to the notions implicit in
coupled similarity.

3.4 Coupled Simulation as a Game
As introduced in Section 2.4, checking preorders with coinductive characterizations like
the one of vCS in Lemma 3.12 can be expressed by games between an attacker,
challenging that p vCS q, and a defender, naming witnesses for the existential
quantifications of the coinduction premises. Let us recall that the difference between
the weak simulation game and the weak bisimulation game consists in the opportunity
of the attacker to switch the direction of the game, which captures symmetry. For the
coupled simulation game, we introduce a game in between the two games.

28This “all” has to be understood with some reservations, since there seemingly are indefinitely
many CSP operators out there.

28

(p, q)a

(α, p′, q)d

(p′, q′)a

(Cpl, p, q)d

(q′, p)a

[p α→ p′]
[q α̂⇒ q′]

[q⇒ q′]

Figure 3.2: Schematic coupled simulation game.

3.4.1 The Coupled Simulation Game

The coupled simulation game proceeds as follows: For p vCS q, the attacker may
question that simulation holds by selecting p′ and α with p α→ p′. The defender then
has to name a q′ with q α̂⇒q′, whereupon the attacker may go on to challenge p′ vCS q

′.
For coupled simulation, the attacker may moreover demand the defender to name
a coupling witness q′ with q ⇒ q′ whereafter q′ vCS p stands to questions. If the
defender runs out of answers, they lose; if the game continues forever, they win.29 This
can be modeled by a simple game, whose schema is given in Figure 3.2, as follows.

Definition 3.26 (vCS game). The coupled simulation game GSCS [p0] = (G,Ga,�, p0)
for a transition system S = (S,Στ ,→) consists of

• attacker nodes (p, q)a ∈ Ga with p, q ∈ S,

• simulation defender nodes (α, p, q)d ∈ Gd for situations where a simulation
challenge has been formulated, and

• new: coupling defender nodes (Cpl, p, q)d ∈ Gd for situations where coupling is
challenged,

and four kinds of moves

• simulation challenges (p, q)a�(α, p′, q)d if p α→ p′,

• simulation answers (α, p′, q)d�(p′, q′)a if q α̂⇒ q′,

• new: coupling challenges (p, q)a�(Cpl, p, q)d, and

• new: coupling answers (Cpl, p, q)d�(q′, p)a if q⇒ q′.30

The differences to the weak simulation game (Definition 2.30) are marked as “new.”
They enable something quite similar to the symmetry swaps of Definition 2.32 with
the innovation that the defender has a say in the direction change. They may choose
a q′ with q⇒ q′ from where to continue after the swap (“coupling answers”). If we
were to restrict the coupling answers to q′ where q = q′ instead of q⇒ q′, we would
again end up with a game characterizing weak bisimilarity.

Intuitively, it is clear, that this is a game in between the weak simulation game
GWS and the weak bisimulation game GWB. The attacker can do more than in GWS ,

29The attacker never runs out of options as they can always question coupling.
30 locale CS_Game.cs_game

29

http://coupledsim.bbisping.de/isabelle/CS_Game.html#cs_game

namely challenge coupling, and the defender can do more than in GWB, namely make
a ⇒-step before a symmetry attack may proceed. This is in line with our observation
from Subsection 2.2.3 that coupling is symmetry relaxed by ⇒.

3.4.2 Correctness of the Game

Let us now see that the defender’s winning region of GCS indeed corresponds to vCS .
To this end, we first show how to construct winning strategies for the defender from a
coupled simulation, and then establish the opposite direction.

Lemma 3.27. Let R be a coupled simulation and (p0, q0) ∈ R. Then the defender
wins GCS [(p0, q0)a] with the following positional strategy:

• If the current play fragment ends in a simulation defender node (α, p′, q)d, move
to some attacker node (p′, q′)a with (p′, q′) ∈ R and q α̂⇒ q′;

• if the current play fragment ends in a coupling defender node (Cpl, p, q)d, move
to some attacker node (q′, p)a with (q′, p) ∈ R and q⇒ q′.31

Proof. Following the specified strategy, the game can only reach attacker nodes (p, q)a

where (p, q) ∈ R.32 Therefore, and because R is a coupled simulation, the attacker
can only lead the defender to positions where the moves of the strategy are allowed33

and the “some”-formulations really specify moves. This can be used to name a next
move for every play fragment ending in a defender node. Consequently, the defender
does not get stuck and wins.

Lemma 3.28. Let f be a winning strategy for the defender in GCS [(p0, q0)a]. Then

R = {(p, q) | some GCS [(p0, q0)a]-play fragment consistent with f ends in (p, q)a}

is a coupled simulation.34

Proof. The proof relies on the fact, that only (p, q)a from where the defender knows
how to win (using f) can be considered when checking the coupled simulation property
of R.

If we challenge the simulation property, that is, demand a q′ such that q α̂⇒ q′ and
(p′, q′) ∈ R given that p α→ p′, then we know that there is a simulation challenge game
move (p, q)a�(α, p′, q)d. Because f is winning, it must know a simulation answer
move (α, p′, q)d�(p′, q′)a and this move gives us the q′ we are looking for due to the
definitions of GCS and R.

Analogously, if we challenge coupling, that is, look for a q′ such that q⇒ q′ and
(q′, p) ∈ R, then we know there is a coupling challenge game move (p, q)a�(Cpl, p, q)d.
Because f is winning, it must know a coupling answer move (Cpl, p, q)d�(q′, p)a and
this move again gives us the desired q′.

With minimal fiddling, this completes our game-theoretic characterization of the
coupled simulation preorder.

31 lemma CS_Game.coupledsim_implies_winning_strategy
32 lemma CS_Game.strategy_from_coupledsim_retains_coupledsim
33 lemma CS_Game.strategy_from_coupledsim_sound
34 lemma CS_Game.winning_strategy_implies_coupledsim

30

http://coupledsim.bbisping.de/isabelle/CS_Game.html#coupledsim_implies_winning_strategy
http://coupledsim.bbisping.de/isabelle/CS_Game.html#strategy_from_coupledsim_retains_coupledsim
http://coupledsim.bbisping.de/isabelle/CS_Game.html#strategy_from_coupledsim_sound
http://coupledsim.bbisping.de/isabelle/CS_Game.html#winning_strategy_implies_coupledsim

⊥

τ

τ
τ

τ

τ

Figure 3.3: Example for S⊥ from Theorem 3.30 (S in black, S⊥\S in red).

Theorem 3.29. The defender wins GCS [(p, q)a] precisely if p vCS q.35

The game theoretic characterization is the basis for our main algorithm in Sec-
tion 4.4 and its parallel implementation in Chapter 5.

3.5 How Hard Can It Be?
We conclude this chapter with a few thoughts on how the properties of coupled
similarity make it compare to related notions of equivalence complexity-wise. The
general rule of thumb for notions of equivalence in between strong bisimilarity and
trace equivalence is that deciding the coarser ones is harder than deciding the finer
ones. This holds true for coupled similarity.

3.5.1 Reduction of Weak Simulation to Coupled Simulation

It is well-established that deciding variants of similarity is at least as hard as deciding
corresponding variants of bisimilarity, and actually tends to be harder [KM02]. So, as
coupled similarity lies in between weak bisimilarity and weak similarity, the question
suggests itself whether coupled similarity rather inherits the complexity of weak
similarity or bisimilarity. The best known algorithms for weak similarity must also
construct the weak simulation preorder. Their running time is cubic in the state space
size, whereas sub-cubic weak bisimilarity algorithms exist.

Unfortunately, deciding the weak simulation preorder can be reduced to deciding
the coupled simulation preorder.

Theorem 3.30. Every decision algorithm for vSCS with running time O(g(t)) can
be used to decide vSWS in running time O(g(2t)), where t = |→| is the number of
transitions in system S and g is some strictly increasing function.

Proof. Let S = (S,Στ ,→) be an arbitrary transition system and ⊥ /∈ S. Then

S⊥ :=
(
S ∪ {⊥}, Στ ,

·→∪ {(p, τ,⊥) | p ∈ S ∪ {⊥}}
)

extends S with a sink ⊥ that can be reached by a τ -step from everywhere. (For an
illustration see Figure 3.3.) Note that vSWS and vS⊥WS resemble each other; that is,
for p, q 6= ⊥, p vSWS q exactly if p vS⊥WS q.36 On S⊥, coupled simulation preorder and

35 theorem CS_Game.winning_strategy_iff_coupledsim
36 lemma Weak_Relations.simulation_sink_invariant

31

http://coupledsim.bbisping.de/isabelle/CS_Game.html#winning_strategy_iff_coupledsim
http://coupledsim.bbisping.de/isabelle/Weak_Relations.html#simulation_sink_invariant

weak simulation preorder coincide, vS⊥WS =vS⊥CS , because ⊥ is τ -reachable everywhere,
and, for each p, ⊥ vS⊥CS p discharges the coupling constraint of coupled simulation.37

Because vSWS can be decided by deciding vS⊥CS , a decision procedure for vCS also
induces a decision procedure for vWS . The transformation increases the amount of
transitions by a factor of at most 2 (it adds O(|S|) ⊆ O(t) new transitions) and can
itself be done in t time, so that the resulting algorithm runs in O(t+ g(2t)) = O(g(2t))
time.

As O(g(2t)) = O(g(t)) in the polynomial world of weak simulation, deciding vCS

cannot have a lower complexity class than deciding vWS . The best known algorithms
for strong simulation vS without transition labeling [HHK95, RT08] run in O(|S| |→|)
time. Of these Ranzato and Tapparo’s algorithm [RT10] has the upside that it
actually is bounded in terms of the number of simulation equivalence classes |S/≡S | and
not the full size of S, that is, by O(|S/≡S | |→|). They advocate the use of the method
by Dovier et al. [DPP04] to transform transition-labeled systems to state-labeled ones.
This method consists in replacing every labeled transition p α→ p′ by an α-labeled state
pαp′ and two unlabeled transitions p→ pαp′→ p′. For a naive reduction from weak
simulation to strong simulation, this would amount to a significantly higher complexity
of O(| ·̂⇒|2), because each weak step would induce its own new state. However, all the
| ·̂⇒| new states can be merged to O(|Στ | |S|) states with out-degree 1. Thus, we can
confidently conjecture that implementations of [RT10] specialized for weak systems
would have time bounds of O(|S/≡WS | |

·̂⇒|).

3.5.2 The Costs of Weakness

We already observed that coarseness comes at a price in the linear-time branching-
time spectrum. This is also true for the weak transition relation ·̂⇒, which plays an
important role in the definition of coupled simulation.

In theory, both the real weak transition relation ·⇒ = ⇒ ·→⇒ and the conventional
transition relation ·→ are bounded in size by |Στ | |S|2. But for most transition systems,
·⇒ tends to be much bigger in size.

Example 3.31. Consider cyclic systems like SC and linear systems like SL from
Figure 3.4, where |Σ| ≤ |S|.38 The systems are given on the left-hand side whereas
the right-hand side displays the weak step closure ·⇒ of the systems. The difference is
highlighted in red. For readability, some labels of Στ -labeled edges are omitted.

• System SC contains a cycle of τ -steps. Consequently, the transitive τ -closure
⇒ relates all states and ·⇒ = S × Στ × S. For cyclic systems like SC , the
weak step relation is of cubic size in the number of original transitions, that is,
| ·⇒| = n2(n+ 1) ∈ O(n3) where n = | ·→|

2 = |S|.

• System SL is linearized by τ -steps. Consequently, ⇒ is a total order and the
weak step relation prepones all the steps of “greater” states. For linear systems
like SL, the weak step relation is not as dense as for systems like SC but still of
cubic size | ·⇒| =

∑
k∈{1..n}

(k+2)(k−1)
2 ∈ O(n3) where n = | ·→|+2

2 = |S|.

37 lemma Coupled_Simulation.tau_sink_sim_coupledsim
38Also available at https://coupledsim.bbisping.de/#cyclic-linear.

32

http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#tau_sink_sim_coupledsim
https://coupledsim.bbisping.de/#cyclic-linear

c0

c1

c2

c3

τ, a

τ,bτ, c

τ,d

System SC with n = 4.

c0

c1

c2

c3

τ, a, b, c,d

τ, b, a, c,dτ, c, a, b,d

τ, d, a, b, c

a, b, c, d, τ

τ -closure of SC .

l0

l1

l2

l3

τ, a

τ,bτ, c

System SL with n = 4.

l0

l1

l2

l3

τ, a

τ,bτ, c

τ, a,b

τ, a,b, c

τ,b, c

τ -closure of SL.

Figure 3.4: Worst-case transition systems for the size of ·⇒.

So, quite sparse ·→-graphs can generate dense ·⇒-graphs.
Moreover, the computation of the transitive closure also has significant time com-

plexity. Algorithms for transitive closures on graphs (V,E) usually are in O(|V | |E|).39

This means computing ⇒ would already be in O(|S| | τ→|), thus cubic in the size of
the state space.

One might argue that the size of weakly τ -connected components in big state spaces
often is bounded by a lower parameter than | τ→|, so that the O(|S| | τ→|)-complexity is
not actualized. Still, the general theoretical complexity of the whole weak equivalence
algorithm cannot be much better than cubic if the transition closure is computed.

So, aside from the complexity inherited from simulation, coupled simulation ad-
ditionally is affected by the inherent complexity of the weak transition relation.
Consequently, one of the questions in the next chapter is how to keep the weak
transition blow-up at bay.

39The theoretical bound is somewhat lower, since the problem can be reduced to matrix multiplica-
tion, for which the best algorithm currently known (Le Gall) runs in O(|V |2.372864) time.

33

Chapter 4

Algorithms

The previous chapters have laid the groundwork for three approaches towards comput-
ing coupled similarity. In this chapter, we turn the axiomatization of ≡CS from [PS94]
into a reduction algorithm, develop a fixed-point algorithm from the vCS -definition of
[vG17], and adapt our game characterization to decide vCS .

4.1 Setting the Stage
First, it is necessary to explicate some assumptions about the setting our coupled
similarity algorithms are expecting.

Obviously, in finite time, they can only deal with a finite portion of a transition
system. So, it does not hurt to assume that the systems are restricted to be finite and
free of disconnected junk states and actions.

Assumption 4.1. The transition systems S = (S,Στ ,→) we are working on are
finite (meaning S and Στ are finite). Their data structures use linear space and can
be traversed in linear time. Σ and S only contain actions and states appearing in →.

We should make two more assumptions concerning the context of minimizations
in which our coupled simulation algorithms are applied.

4.1.1 Dealing with the τ-Closure

A lot of headaches can be avoided by ruling out τ -cycles right from the start.

Assumption 4.2. The input transition systems of our core algorithm are τ -cycle-free.

This is no hack because the cycles can actually be removed quite easily. First, they
can be conflated to τ -loops because strongly τ -connected states are coupled similar
(Corollary 3.17). This is accomplished by Tarjan’s O(| τ→|)-algorithm for strongly
connected components in directed graphs [Tar72]. An implementation can be found
in de.bbisping.coupledsim.algo.transform.TauLoopCompression. Second, be-
cause τ -loops are invisible to coupled simulation by Lemma 3.19, we can remove or
ignore the remaining τ -loops.

(Sub-)systems like the cyclic SC from Example 3.31 then collapse to single states
and thus lose their space complexity. If the system has no τ -cycles, for example, as it
is divergence-free like the linear SL, the compression will have no effect. Either way,

34

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/transform/TauLoopCompression.scala

after the compression, we can be sure that the τ -edges form a directed acyclic graph
(DAG), which algorithms can handle more efficiently.

At this point, it even is questionable whether to explicitly build the τ -closure ·̂⇒,
which would otherwise seem a reasonable preparation for weak equivalence algorithms.
But the τ -DAG already is a good data structure to walk for the equivalence algorithms.1

Indeed, sub-cubic time complexities for weak bisimulation [RT08, Li09, BGRR16],
branching bisimulation [GJKW17], and other weak equivalences can be achieved by
abstaining from the computation of the transitive closure. The developers of the CSP
refinement checker FDR4 present a few more thoughts on this in [BGRR16], and we
will run into the question again in Subsection 4.5.4.

4.1.2 Minimization

The τ -cycle compression actually is only an instance of a more general approach in
equivalence algorithms, namely to minimize the input system with finer notions of
equivalence. Minimization means that one uses an equivalence relation ≡X and builds
the quotient system:

Definition 4.3 (Quotient system). Given an equivalence relation ≡X and a transition
system S = (S,Στ ,→), the quotient system is defined as S/≡X := (S/≡X ,Στ ,→/≡X)
where S/≡X is the set of equivalence classes, and

p
α→/≡X q for p, q ∈ S/≡X iff there are p0 ∈ p, q0 ∈ q such that p0

α→ q0.

Instead of S/≡X , it might often be more convenient to take the set of equivalence
class representatives. A straight-forward algorithm for this transformation is imple-
mented in de.bbisping.coupledsim.algo.transform.BuildQuotientSystem.

Our last—in a way: meta—assumption is that our algorithms run in the context
of such minimizations:

Assumption 4.4. The result of our vCS-algorithms should be usable to minimize
systems and to tell whether two certain states are equivalent.

Minimized systems are more manageable for proofs and presentations. For example,
van Glabbeek and Weijland [vGW96] report that Peterson’s mutual exclusion
algorithm minimized by coupled similarity has only nine states as opposed to fourteen
states in weak bisimulation semantics. The quotient systems have the nice property
that within them their equivalences equal the identity relation. Together with some
normalization procedure, this can be used to generate unique-up-to-isomorphism
representatives for equivalent transition systems. A lot of details have to be taken
care of if one pursues fully minimal unique representatives [EHS+13].

Moreover, minimizations can be used to speed up algorithms. For instance, if
two states are strongly bisimilar, then they also are coupled similar. So, no coupled
simulation algorithm will tell them apart. Consequently, they can be represented by a
single state right from the beginning. As finer equivalence algorithms tend to have
better space and time complexities, this can significantly push the boundary of what
system sizes can be tackled by an implementation.

1One might argue that loop compression somewhat is a part of the transitive closure problem.
For example, it also is the first step of Boost’s widely used transitive closure implementation.
http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/transitive_closure.html

35

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/transform/BuildQuotientSystem.scala
http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/transitive_closure.html

4.2 The Bisimulation Approach
A common approach for notions of equivalence, is to construct algorithms that solve
the equivalence problem by reducing it to strong bisimilarity. Bisimilarity, then, can
be decided by tried and tested algorithms. For instance, the Paige–Tarjan algorithm
[PT87] computes bisimilarity relations in O(|S| log |→|) time and with little space
overhead.

Such a reduction also is possible for coupled similarity building on Parrow and
Sjödin’s axiomatization from Section 3.3. But, things might get messy.

The normalization algorithm quickly turns out to be intractable, which is why this
section remains sketchy around the fine points of implementation and correctness of
the algorithm.

4.2.1 The Reduction

Parrow and Sjödin’s [PS94] completeness proof for their axiomatization of ≡CS

relies on normalizing process terms. As they point out, this normalization induces a
bisimulation-reduction-based coupled similarity algorithm. Their normalization can
≡CS-soundly rewrite finite (recursion-free) CCS process terms such that ≡CS and
≡WB coincide.

There are three gaps that are to be filled for our setting: The normal forms must
be lifted to transition systems; the normalization must be described algorithmitically;
and the problem of divergent τ -cycles must be addressed.

Lifting Definition 3.24 of CS-normal forms from CCS processes to transition systems,
we get:

Definition 4.5 (CS-normal TS). A transition system S = (S,→,Στ) is in CS-normal
form iff

1. p α⇒ p′ implies p α→ p′,

2. p τ→ p′ implies p′ stable, and

3. if p α→ p′ and p′ instable, then for every subset of p′-transitions, P̂ ⊆ {(β, p′′) |
p′

β→p′′}, containing at least one τ -transition, there exists p̂ such that p α→≡S′CSc p̂,
where S ′ :=

(
S ∪ {p̂}, Στ , →∪ ({p̂}×P̂)

)
.

Conditions 1, 2, and 3 correspond to clauses 3, 4, and 5 from Definition 3.24.
There, we already observed that the last condition ensures saturation of the system
with all partial commits that could be hidden in the trailing ⇒-part of a weak visible
transition. In order to see what this means, let us consider the following example from
[PS94].

Example 4.6. Figure 4.1 gives a system, its ·⇒-closed version, and its minimal
CS-normal form with respect to Definition 4.5.

The ·⇒-closed system already suffers from the blow-up in transitions discussed in
Subsection 3.5.2. To make it obey condition 2 from Definition 4.5, it suffices to remove
the τ -step between the two instable states p1 and p2 (highlighted in red).

However, condition 3 then demands all partial choices that could have been skipped
between p1 and {p3, p4} by p0

a⇒-steps to be present. So, p1 and p2 are shuffled into

36

p0

p1

p2

p3 p4

p5

a

τ

τ τ

b c

Original system.

p0

p1

p2

p3 p4

p5

a

a
a a

τ

τ τ

b, c

τ τ

b, c

b c

·⇒-closed system.

p0

p3 p4

p5

p1/p2

b c

a a
a a

a a

aτ

b, c

τ

b, c
τ

b

τ

c

τ τ
b, c

CS-normal form.

Figure 4.1: CS-normalization from [PS94].

the five red states in the right-hand side system. For instance, the left-most red state
expresses the partial commit that the a-step has already committed not to perform c
but still can prepend the b-step with τ . The result would be even bigger if it did not
exploit the fact that p1 and p2 are bisimilar after the computation of the ·⇒-closure
and the removal of instable τ -steps.

Such normal forms can actually be computed. Lemma 18 of [PS94] gives an
existence proof, which motivates the algorithm of this section. Lifting their lemma to
transition systems, we get:

Lemma 4.7. ([PS94]) For every finite S = (S,Στ ,→) with acyclic →, there is a
finite S ′ in CS-normal form such that, for each p, q ∈ S, p ≡SCS q precisely if p ≡S′CS q.

For S ′ in normal form, p ≡S′CS q precisely if p ≡S′WB q.

Like Parrow and Sjödin [PS94], we assume that this carries over to general finite
transition systems. This assumption is based on the impression that the main trouble
arises from τ -cycles. But by Assumption 4.2, these have been erased as described in
Subsection 4.1.1.

4.2.2 The Algorithm

The core of the reduction approach outlined in Algorithm 1 is the normalization
procedure in construct_cs_normalization, the implementation of which can be found
in de.bbisping.coupledsim.algo.transform.PS94CSNormalForms.

Line 2 builds the weak transition closure with the restriction that τ -steps may only
reach stable states. This corresponds to the first two requirements of Definition 4.5.

37

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/transform/PS94CSNormalForms.scala

1 def construct_cs_normalization(S = (S,Στ ,→)):
2 := {(p, α, p′) | p α⇒ p′ ∧ (α = τ −→ p′ 6 τ→)}
3 � := {(p, α, P) |
4 ∃p′. p α

 p′ ∧ ¬p′ 6 τ→

5 ∧P ⊆ {(β, p′′) | p′ β p′′}
6 ∧∃p′′. (τ, p′′) ∈ P}
7 SP := {P | ·

·
� P 6= ∅}

8 →′ := ∪ � ∪ {(P, β, p′′) | P ∈ SP ∧ (β, p′′) ∈ P}
9 return (S ∪ SP ,Στ ,→′)

10 def compute_cs_by_normalization(S = (S,Στ ,→)):
11 Sold := ⊥
12 while Sold 6= S:
13 Sold := S
14 S := construct_cs_normalization(S)
15 R := strong_bisim(tau_refl(S))
16 return R∩ (S × S)
Algorithm 1 : Bisimulation-reduction-based algorithm for coupled similarity ≡CS .

Lines 3 to 7 cover the third requirement: the presence of partial commits. The
new partial commit states are represented by the sets of their outgoing edges because
two partial commits that lead to the same set of remaining moves can be considered
equivalent. τ -loops might cause trouble here, but we do not bother with them in line
with Assumption 4.2.

The newly added partial commit states do not necessarily fulfill requirement 1
and 3. Some of the implied steps could be missing for them and they might not
be closed under partial commits. However, this can be dealt with by repeating
construct_cs_normalization until a fixed point2 is reached. This is what is happening
in lines 12ff. of compute_cs_by_normalization.

On the resulting S, p ≡SCS q if and only if p ≡SWB q by Lemma 4.7. The clauses
it fulfills are a superset of the demands of the normalization for weak bisimilarity
from Subsection 2.3.2. So, everything one needs to complete the reduction to strong
bisimilarity is the reflexive closure on τ -steps of the transition relation. This is done
in line 15. Afterwards, the equivalences determined for the initial states carry over to
the original system, which is why R∩ (S × S) is returned. Note that this rests on the
fact that no on-the-fly merging (as in Example 4.6) of states is happening.

4.2.3 Complexity

The reduction Algorithm 1 is exponential in time and space. The target states of �
are constructed from an only slightly filtered power set of outgoing weak transitions
(line 8), the size of which is exponential in the original outgoing transition count.

The complexity is bounded by the branching degree of the special weak transition
2A fixed point x of a function f : A→ A is a value where x = f(x). The next pages repeatedly

draw on this concept. An introduction to fixed points can be found in Nielson, Nielson, and
Hankin’s “Principles of Program Analysis” [NNH15].

38

1 def fp_step(S,Στ ,→)(R):
2 return {(p, q) ∈ R |
3 (∀p′, α. p α→ p′ −→ ∃q′. (p′, q′) ∈ R ∧ q α̂⇒ q′)
4 ∧ (∃q′. q⇒ q′ ∧ (q′, p) ∈ R)}

5 def fp_compute_cs(S = (S,Στ ,→)):
6 R := S × S
7 while fp_stepS(R) 6= R:
8 R := fp_stepS(R)
9 return R
Algorithm 2 : Fixed-point algorithm for the coupled simulation preorder vCS .

relation . In practice, bounds like this one often mean that the exponentiality of
an algorithm remains of limited impact. For instance, the reduction of weak trace
equivalence to strong bisimilarity from [CH93] is exponential in theory but usable in
practice. For the present algorithm however, the complexity indeed makes it practically
intractable because inherits the boosted branching degree of ·⇒.

Even if one combined the algorithm with some on-the-fly minimization techniques,
an exponential amount of additional states and transitions would still be necessary.

Its intractability is the reason why we do not focus on refining the algorithm and
proving its correctness. Instead, we continue with other algorithms right away.

This section has illustrated that the reduction of coupled similarity to weak/strong
bisimilarity as hinted at by [PS94] is possible, but indeed much more expensive than
the polynomial τ -closure-based reductions of notions in between weak and strong
bisimilarity. Luckily, there are less expensive approaches.

4.3 The Fixed-Point Approach
The coinductive characterization of vCS in Lemma 3.12 induces an extremely simple
polynomial-time algorithm to compute the coupled simulation preorder as a greatest
fixed point. This section introduces the algorithm and proves its correctness.

4.3.1 The Algorithm

Roughly speaking, the algorithm first considers the universal relation between states,
S×S, and then proceeds by removing every pair of states from the relation that would
contradict the coupling or the simulation property. Its pseudo code is depicted in
Algorithm 2. An implementation can be found in de.bbisping.coupledsim.algo.
cs.FixedPointCoupledSimilarity.

fp_step plays the role of removing the tuples that would immediately violate the
simulation or coupling property from the relation. Of course, such a pruning might
invalidate tuples that were not rejected before. Therefore, fp_compute_cs repeats the
process until fp_stepS(R) = R, that is, until R is a fixed point of fp_stepS .

39

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/cs/FixedPointCoupledSimilarity.scala
http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/cs/FixedPointCoupledSimilarity.scala

4.3.2 Correctness

It is quite straight-forward to show that Algorithm 2 indeed computes vCS because
of the resemblance between fp_step and the coupled simulation property itself, and
because of the monotonicity of fp_step.

Lemma 4.8. If fp_stepS(R) = R, then R is a coupled simulation.3

So, we can be sure that our algorithm, if it terminates, finds some coupled simulation.
But is it the vCS-relation—which is to say the greatest one? First, let us note that
fp_step is monotone on the subset lattice over 2S×S .

Lemma 4.9. R1 ⊆ R2 implies fp_stepS(R1) ⊆ fp_stepS(R2).4

This guarantees the existence of a greatest fixed point by the Knaster–Tarski
theorem. This greatest fixed point coincides with vCS .

Lemma 4.10. If R is the greatest fixed point of fp_step, then R =vCS .5

On finite labeled transition systems, that is, with finite S and →, the while loop
of fp_compute_cs is guaranteed to terminate at the greatest fixed point of fp_step
(by a dual variant of the Kleene fixed-point theorem).

Lemma 4.11. For finite transition systems S, fp_compute_cs(S) computes the great-
est fixed point of fp_stepS .6

Wrapping up the previous two lemmas, we receive that fp_compute_cs is correct.

Theorem 4.12. For finite transition systems S, fp_compute_cs(S) returns vSCS .7

The proof is intuitively and machine-verifiably correct. Because of its simplicity,
we can trust implementations of Algorithm 2 to faithfully return sound and complete
vCS -relations. Therefore, we can use this algorithm to generate reliable results within
test suites for the behavior of other vCS -implementations.

4.3.3 Complexity

The space complexity, given by the maximal size of R, clearly is in O(|S|2). Time
complexity takes some inspection of the algorithm. For our considerations, we assume
that ·̂⇒ has been pre-computed, which can slightly increase the space complexity to
O(|Σ| |S|2).

Lemma 4.13. The running time of fp_compute_cs is in O(|Σ| |S|6).

Proof. Checking the simulation property for a tuple (p, q) ∈ R means that for all
O(|Σ| |S|) outgoing p→-transitions, each has to be matched by a q ·̂⇒-transition with
identical action, of which there are at most |S|. So, simulation checking costsO(|Σ| |S|2)
time per tuple. Checking the coupling can be approximated by O(|S|) per tuple.
Simulation dominates coupling. The amount of tuples that have to be checked is in
O(|S|2). Thus, the overall complexity of one invocation of fp_step is in O(|Σ| |S|4).

3 lemma CS_Fixpoint_Algo.fp_fp_step
4 lemma CS_Fixpoint_Algo.mono_fp_step
5 lemma CS_Fixpoint_Algo.gfp_fp_step_gcs
6 lemma CS_Fixpoint_Algo.gfp_fp_step_while
7 lemma CS_Fixpoint_Algo.coupled_sim_fp_step_while

40

http://coupledsim.bbisping.de/isabelle/CS_Fixpoint_Algo.html#fp_fp_step
http://coupledsim.bbisping.de/isabelle/CS_Fixpoint_Algo.html#mono_fp_step
http://coupledsim.bbisping.de/isabelle/CS_Fixpoint_Algo.html#gfp_fp_step_gcs
http://coupledsim.bbisping.de/isabelle/CS_Fixpoint_Algo.html#gfp_fp_step_while
http://coupledsim.bbisping.de/isabelle/CS_Fixpoint_Algo.html#coupled_sim_fp_step_while

Because every invocation of fp_step decreases the size of R or leads to termination,
there can be at most O(|S|2) invocations of fp_step in fp_compute_cs. Checking
whether fp_step changes R can be done without notable overhead. In conclusion, we
arrive at an overall time complexity of O(|Σ| |S|6).

In Subsection 3.5.1, we already noticed that computing vCS is at least as complex
as computing vWS . The observation now, that ensuring the coupling condition costs
less than ensuring simulation, increases hope that computing vCS is not more complex
than computing vWS .

Lemma 4.13 seems not to be extra-ordinarily noteworthy. Still, in combination
with Theorem 4.12, it already proves that computing coupled similarity is in P and
thus less complex than computing trace equivalence, which is PSPACE-complete
[CH93]. Parrow and Sjödin [PS94] while hinting at the exponential algorithm from
Section 4.2 formulated as an open research question whether ≡CS can be decided in P,
and—to the author’s knowledge—we are hereby explicitly answering the question for
the first time. Given that deciding the equivalences surrounding ≡CS in the linear-time
branching-time spectrum is in P, a different result for ≡CS would have been extremely
surprising.

Now, it does not take much energy to spot that applying the filtering in fp_step
to each and every tuple in R in every step, would not be necessary. Only after a
tuple (p, q) has been removed from R, the algorithm does really need to find out
whether this was the last witness for the ∃-quantification in the clause of another tuple.
While this observation could inspire various improvements, let us fast-forward to the
game-theoretic approach in the next section, which elegantly explicates the witness
structure of a coupled similarity problem.

4.4 The Game-Theoretic Approach
Section 3.4 introduced a simple two-player game characterization of the coupled
simulation preorder and proved its correctness. Deciding winning regions of finite
simple games is in linear running time. Going down this route, the game approach
induces a nice and reliable way of computing the coupled simulation preorder vCS

with running time cubic in the count of transition system states.

4.4.1 Deciding the Coupled Simulation Game

It is well-known that the winning regions of finite simple games can be computed in lin-
ear time. Variants of the standard algorithm for this task can be found in [Grä07] and
[Kre16]. A slightly simplified8 version of it is given in Algorithm 3 and implemented in
the Scala trait de.bbisping.coupledsim.game.WinningRegionComputation. In-
tuitively, the algorithm first assumes that the defender wins everywhere and then sets
off a chain reaction beginning in defender deadlock nodes, which “turns” all the nodes
won by the attacker.

The algorithm compute_winning_region proceeds as follows: Initially, it determines
8The difference is that Grädel’s formulation is for well-founded games and might consider

situations with cycles undecided. Interestingly, matters actually become simpler if infinite plays are
considered wins for the defender: We can just unfold the winning region of the attacker and consider
every other position a win for the defender due to the determinacy property from Proposition 2.29.

41

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/game/WinningRegionComputation.scala

1 def compute_winning_region(G = (G,Ga,�)):
2 predecessors := [g 7→ (·� g) | g ∈ G]
3 num := [g 7→ n | g ∈ G ∧ n = ‖{p | g� p}‖]
4 win := [g 7→ d | g ∈ G]
5 def propagate_attacker_win(g):
6 if win[g] = d :
7 win[g] := a

8 for gp ∈ predecessors(g):
9 num[gp] := num[gp]− 1

10 if gp ∈ Ga ∨ num[gp] = 0 :
11 propagate_attacker_win(gp)
12 for g ∈ Gd:
13 if num[g] = 0 :
14 propagate_attacker_win(g)
15 return win

Algorithm 3 : Algorithm for deciding simple games.

1 def game_compute_cs(S):
2 GSCS = (G,Ga,�) := obtain_cs_game(S)
3 win := compute_winning_region(GSCS)
4 R := {(p, q) | (p, q)a ∈ Ga ∧ win[(p, q)a] = d}
5 return R

Algorithm 4 : Game algorithm for the coupled simulation preorder vCS .

the predecessors (line 2) and the number of successors (line 3, num) for each node. It
first assumes that every node is won by the defender d (line 4, win). Consequently,
num also equals the number of assumed winning defender moves and this will be
the core invariant. The defender loses nodes where they have no move to a winning
node. So, the recursion starts at defender nodes without winning moves (line 12).
propagate_attacker_win (line 5) is called every time when it is discovered that a node
is actually won by the attacker. Then the attacker also wins the predecessors of the
node they own and propagate_attacker_win is recursively called on these nodes in
line 11. For each predecessor, num is decreased by one because it loses the current
node as a winning defender move. If this was their last move, predecessors owned by
the defender are also won by the attacker, which is propagated in line 11 as well.

The algorithm runs in linear time of the game moves because every node can only
turn once. It can be used to decide arbitrary finite simple games and, consequently,
also to decide our coupled simulation game GCS from Subsection 3.4.1.

Using compute_winning_region, it is only a matter of a few lines to determine
the coupled simulation preorder for a system S as shown in game_compute_cs
in Algorithm 4. One starts by constructing the corresponding game GSCS using a
function obtain_cs_game, we consider given by Definition 3.26. Then, one calls
compute_winning_region and collects the attacker nodes won by the defender for the
result. The implementation, including the construction of the game, can be found in

de.bbisping.coupledsim.algo.cs.GameCoupledSimilarityPlain.

42

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/cs/GameCoupledSimilarityPlain.scala

4.4.2 Correctness

The correctness of game_compute_cs in Algorithm 4 is mostly guaranteed by the
proofs conducted in Subsection 3.4.2.

Theorem 4.14. For a finite labeled transition systems S, game_compute_cs(S) from
Algorithm 4 returns vSCS .

Proof. Theorem 3.29 states that the defender wins GSCS [(p, q)a] exactly if p vSCS q.
As compute_winning_region(GSCS), according to [Grä07, Kre16], returns where the
defender wins, line 4 of Algorithm 4 precisely assigns R =vSCS .

4.4.3 Complexity

The complexity arguments from [Grä07] yield linear complexity for deciding the game
by Algorithm 3.

Proposition 4.15. For a game G = (G,Ga,�), compute_winning_region (Algo-
rithm 3) runs in O(|G|+ |�|) time and space.

In order to tell the overall complexity of the resulting algorithm, we have to look
at the size of GSCS depending on the size of S.

Lemma 4.16. Consider the coupled simulation game GSCS = (G,Ga,�) for varying
S = (S,Στ ,→). The growth of the game size |G|+ |�| is in O(| ·̂⇒| |S|).

Proof. Let us reexamine Definition 3.26. There are |S|2 attacker nodes. Collectively,
they can formulate O(| ·→| |S|) simulation challenges and |S|2 coupling challenges.
There are O(| ·̂⇒| |S|) simulation answers and O(|⇒| |S|) coupling answers. Of these,
O(| ·̂⇒| |S|) dominates the others.

Lemma 4.17. game_compute_cs (Algorithm 4) runs in O(| ·̂⇒| |S|) time and space.

Proof. Proposition 4.15 and Lemma 4.16 already yield that line 3 is in O(| ·̂⇒| |S|) time
and space. Definition 3.26 is completely straight-forward, so the complexity of building
GSCS in line 2 equals its output size O(| ·̂⇒| |S|), which coincides with the complexity of
computing ·̂⇒. The filtering in line 4 is in O(|S|2) (upper bound for attacker nodes)
and thus does not influence the overall complexity.

With the estimate that O(| ·̂⇒|) = O(|Σ| |S|2), this would amount to O(|Σ| |S|3).
The game algorithm thus has cubic complexity with respect to the state space. Recalling
that Section 3.5 already predicted cubic complexity due to the simulation nature of
coupled simulation, the presented game algorithm should be decent enough as a basis
for further work. Therefore, the remainder of the chapter focuses on improving it.

4.5 Optimizing the Game Algorithm
A huge advantage of the game-theoretical approach is that it adds an intuitive and
manageable layer of abstraction. In many situations, we can use additional knowledge
we have about vCS to reduce the game size.

43

1 def discover_game(G0, successors):
2 predecessors := [] with default ∅
3 num := []
4 todo := G0

5 discovered := G0

6 while todo 6= ∅:
7 choose gc ∈ todo
8 todo := todo \ {gc}
9 num[gc] := |successors(gc)|

10 for gn ∈ successors(gc):
11 predecessors[gn] := predecessors[gn] ∪ {gc}
12 if gn /∈ discovered :
13 discovered := discovered ∪ {gn}
14 todo := todo ∪ {gn}
15 return (discovered, predecessors, num)

Algorithm 5 : Game discovery.

4.5.1 Discovering What Matters

The GCS-game from Section 3.4 can directly be used to answer the question: “For
every p, q in S, is p vCS q?” But usually we are not interested in every p and q.

One common case is to ask the question only for two initial states p0 and q0, for
example, because the relationship of two program fragments starting in these states is
of interest. To determine p0 vCS q0, only some part of vCS must be decided. As a
consequence, we would not need the full-blown game graph. For some examples, this
might even render the vCS -problem on infinite transition systems decidable.

Another instance where we wonder whether p vCS q just for a subset of S × S is
if we already know that p 6vCS q for some p, q. For example, if p has more weakly
enabled actions than q, we know that p 6vCS q without invoking the algorithm.

For these instances, it is reasonable not to build the whole game graph but only
the portion that matters.

discover_game of Algorithm 5 constructs only the fragment of a game that is
reachable from some relevant game positions G0 via moves specified by a function
successors : G → 2G. It returns precisely the information that is needed in the
initialization of the winning region algorithm from Subsection 4.4.1. It is an ordinary
graph search algorithm, so it runs in linear time of the discovered edges and linear
space of the reached vertices. The implementation can be found in de.bbisping.
coupledsim.game.GameDiscovery.

4.5.2 Over- and Under-Approximations

The game can be downsized tremendously once we take additional over- and under-
approximation information into account.

Definition 4.18. An over-approximation of vCS is a relation RO of that we know
that vCS ⊆ RO. Conversely, an under-approximation of vCS is a relation RU where
RU ⊆vCS .

44

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/game/GameDiscovery.scala
http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/game/GameDiscovery.scala

For instance, an obvious under-approximation would be the identity function ∆S

as we do not have to ask whether p vCS p. It is true no matter the structure of S.
Over-approximations can be combined to acquire higher precision: If RO1 and RO2

are over-approximations then so isRO1∩RO2. The dual holds for under-approximations
(RU1 ∪RU2).

Regarding the game, over-approximations tell us where the defender can win, and
under-approximations tell us where the attacker is doomed to lose. They can be used
to eliminate “boring” parts of the game.

Given an over-approximation RO, when discovering the game, it only makes sense
to add moves from defender nodes to attacker nodes (p, q)a if (p, q) ∈ RO. There just
is no need to allow the defender moves we already know cannot be winning for them.
So, the discovery can skip outgoing game moves from defender nodes to attacker nodes
if they leave the over-approximation. Likewise, only subsets of RO should be used as
starting point for the discovery from Subsection 4.5.1—the other attacker nodes do
not matter because they would be won by the attacker anyways.

Given an under-approximation RU , we can ignore all the outgoing moves of (p, q)a

if (p, q) ∈ RU . Without moves, (p, q)a is sure to be won by the defender, which is in
line with the claim of the approximation.

de.bbisping.coupledsim.algo.cs.GameCoupledSimilarity implements a va-
riant of the coupled simulation game where the game graph can be kept small using
approximations.

Two examples for approximations that are easily supplyable once the τ -closure has
been computed are:

Corollary 4.19. ⇒−1 is an under-approximation of vCS . (Cf. Lemma 3.16)

Lemma 4.20. R = {(p, q) | all actions weakly enabled in p are weakly enabled in q}
is an over-approximation of vCS .9

The trouble with over-approximations is that, as we already discussed, coarser
notions of equivalence tend to have more expensive algorithms than finer ones. The
question thus is which helpful coarser notions of equivalence are easily computable in
the context of our coupled simulation preorder algorithm.

4.5.3 Over-Approximation by Maximal Weak Steps

That coupled simulation is “almost bisimulation” on steps to stable states in fi-
nite systems (Lemma 3.20) can be used for a comparably cheap and precise over-
approximation.

The idea is to compute the strong bisimulation on the system S⇒| = (S,Στ ,⇒|),
where maximal weak steps, p α⇒| p′, exist iff p α̂⇒ p′ and p′ is stable, that is, p′ 6 τ→. Let
≡⇒| be the biggest symmetric relation where

p ≡⇒| q and p α⇒| p′ implies there is q′ such that p′ ≡⇒| q′ and q
α⇒| q′.

By Lemma 3.20, ≡CS ⊆≡⇒|. Using this and exploiting that the existential quantifica-
tion can be hidden in the relation concatenation of α⇒| and ≡⇒|, Lemma 3.20 can be
rewritten to:

9 corollary Coupled_Simulation.coupledsim_enabled_subs

45

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/cs/GameCoupledSimilarity.scala
http://coupledsim.bbisping.de/isabelle/Coupled_Simulation.html#coupledsim_enabled_subs

p vCS q and p α⇒| p′ implies q α⇒|≡⇒| p′.

This yields that the subset relationship on the α⇒|≡⇒|-signatures makes for a neat
over-approximation:

Lemma 4.21. R⇒| = {(p, q) | (p α⇒| ·) ⊆ (q α⇒|≡⇒| ·)} is an over-approximation of
vCS on finite systems.

Computing ≡⇒| can be expected to be cheaper than computing ≡WB. After all,
·⇒|

is just a subset of ·̂⇒. However, filtering S×S using subset checks to create R⇒| might
well be quartic, O(|S|4), or worse. Nevertheless, one can argue that with a reasonable
algorithm design and for many real-world examples, α⇒|≡⇒| will be sufficiently bounded
in branching degree, in order for the over-approximation to do more good than harm.

For everyday system designs, R⇒| is a tight approximation of vCS . On the
philosopher system SP from Example 2.6f., they even coincide. In some situations,
R⇒| degenerates to the shared enabledness relation (Lemma 4.20), which is to say it
becomes comparably useless. One example for this are the systems created by the
reduction from weak simulation to coupled simulation in Subsection 3.5.1 after τ -cycle
removal. There, all ⇒|-steps are bound to end in the same one τ -sink state ⊥.

Our implementation computes ≡⇒| using a signature refinement algorithm in
de.bbisping.coupledsim.algo.sigref.BigStepEquivalence. Signature refine-

ment [WHH+06, Wim11] describes a class of iterative algorithms for coarsest partitions
where algorithms for bisimulation-like equivalences can be expressed concisely by spec-
ifying a “signature.” The signature describes for every state which information about
the current partitions of successor states can distinguish it from other states. The
advantage of this class of algorithms is their maintainability and their distributability
[BO03].

4.5.4 Gamifying the τ-Closure

The inherently transitive nature of games gives us the opportunity to avoid the
computation of the τ -closure. The exploration of the τ -closure necessary to find a
tuple from α̂⇒ as simulation answer or a tuple from ⇒ as coupling answer can also be
accomplished using steps between defender nodes.

Definition 4.22. The τ -closure-free coupled simulation game GτCS [p0] = (G,Ga,�, p0)
has the same kinds of nodes as GCS [p0] from Definition 3.26 and the following kinds
of moves:

• simulation challenges (p, q)a�(α, p′, q)d if p α→ p′,

• new: simulation answer postponements (α, p′, q)d�(α, p′, q′)d if q τ→ q′,

• new: simulation answer steps (α, p′, q)d�(τ, p′, q′)d if q α→ q′,

• new: simulation answer resolutions (τ, p, q)d�(p, q)a,

• coupling challenges (p, q)a�(Cpl, p, q)d,

• new: coupling steps (Cpl, p, q)d�(Cpl, p, q′)d if q τ→ q′, and

• modified: coupling resolutions (Cpl, p, q)d�(q, p)a.

46

http://coupledsim.bbisping.de/code/shared/src/main/scala-2.11/de/bbisping/coupledsim/algo/sigref/BigStepEquivalence.scala

This reformulation relies on the τ -cycle removal from Subsection 4.1.1. If they
had not been removed, such τ -cycles would break the game as they would introduce
spurious infinite winning runs for the defender.

Following Definition 4.22, the game can be constructed without the costly compu-
tation of the τ -closure. Interestingly, this modification at the same time reduces the
amount of moves in the game. We are saving twice.

Now, the old dominating amount of simulation answers in O(| ·̂⇒| |S|) is superseded
by the amounts of simulation answer postponements O(|Στ | |

τ→| |S|) and simulation an-
swer steps O(| ·→| |S|). O(|⇒| |S|) coupling answers are replaced by O(| τ→| |S|) coupling
steps (and O(|S|2) resolutions). So, for sensible transition systems O(|Στ | |

τ→| |S|) be-
comes the new size bound. Although this bound is effectively smaller than O(| ·̂⇒| |S|),
it still is cubic in the state space.

4.6 Discussion
Of the algorithms presented, clearly the game-theoretic one is the most attractive.
Its cubic O(| ·̂⇒| |S|) complexity and its flexibility make it a good choice for many
applications. However, the game graph of cubic size uses a lot of space.

The fixed-point algorithm has the advantage of a tendentially lower memory usage,
its simplicity, and verified dependability. Its O(|S|6) time complexity is daunting.
It might however be a good basis for improvements in the spirit of the simulation
algorithms in [HHK95].

The bisimulation reduction algorithm is neither simple nor efficient. This comes
from the peculiar normalization procedure in [PS94]. Unless a trick is devised to get
around the partial commit closure, it is not really fit for application.

Further improvements of the algorithms could be possible by “symbolic refinements.”
A classical approach in simulation algorithms [HHK95, GPP03, vGP08, RT10] is to
represent R by a partition relation pair (P,R), where the relation R is only defined on
partitions of S instead of the whole graph. Partitions of graphs (aka. “colorings”) can
be stored very efficiently and a lot of tuples of R can be saved this way. This might
bring down some of the |S| components of the complexity terms to |S/≡CS |. Once we
assume that the transition system has been minimized with respect to ≡WB before
our computations, so that |S| = |S/≡WB |, the partition relation pair trick would not
save a lot. |S/≡WB | and |S/≡CS | will be almost equal for many systems.

The other route of symbolic refinements are binary decision diagrams (BDDs),
where R and ·̂⇒ can be stored and modified in a kind of on-the-fly zip format
[Wim11, WHH+06, Bul11]. This would be connected with some technicalities and
would hamper distributability. But it can lead to significant complexity savings
as long as one disregards the complexity of the conversions from and to the BDD
representation.

47

Chapter 5

A Scalable Implementation

How applicable are our algorithms in practice? Coupled similarity has restrictions
on the size of systems it can cope with as it inherits from similarity that it is
computationally harder than bisimilarity.

The experimental results by Ranzato and Tapparo [RT10] suggest that their
simulation algorithm and the algorithm by Henzinger, Henzinger, and Kopke
[HHK95] only work on comparably small systems. The necessary data structures
quickly consume gigabytes of RAM. So, the bothering question is not so much whether
some highly optimized C++-implementation can do the job in milliseconds for small
problems, but how to implement the algorithm such that large-scale systems are
feasible at all.

To give first answers, this chapter presents a scalable and distributable prototype
implementation of the coupled simulation game algorithm using the stream processing
framework Apache Flink.

5.1 Prototype Implementation
We base our implementation on the game algorithm from Section 4.4 and the opti-
mizations presented in Section 4.5. The implementation is a vertical prototype in
the sense that every feature to get from a transition system to its coupled simulation
preorder is present, but there is no big variety of options in the process.

5.1.1 Apache Flink

Apache Flink [CKE+15] (https://flink.apache.org/) is a platform for computa-
tions on large data sets built around a universal data-flow engine. Once an algorithm
has been adapted to the data-flow way of describing computation, it in principle is
easy to distribute and replicate the program parts to use whole server farms of memory
and computational power.

An Apache Flink program is a graph whose nodes represent data sources and sinks,
intermediate data sets, and operations. The programs can easily be built using Scala
code. Its API supports iterative algorithms. Flink ships with the library Gelly1 for
graph algorithms.

1Gelly—Flink Graph API, https://ci.apache.org/projects/flink/flink-docs-release-1.4/
dev/libs/gelly/.

48

https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/gelly/
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/gelly/

5.1.2 Algorithm Stages

de.bbisping.coupledsim.flink.CoupledSimulationFlink describes a pipeline to
compute the coupled simulation preorder. Abstractly, it first minimizes the transition
graph using a finer equivalence relation, then computes an over-approximation, uses
the result to build the interesting part of the coupled simulation game, and finally
computes the winning regions of the game. The phases, in detail, are:

Import Reads a CSV representation of the transition system S. Transition systems
are encoded as comma separated values of edge sets, which is one of the default
formats for graphs in Flink/Gelly. Every line represents one transition in the form
sourceID, targetID, "actionLabel". The IDs are positive integers, the actions are
strings. The internal action (τ) is denoted by i. At runtime, the actions are
recoded to integers.

Minimize Computes an equivalence relation under-approximating ≡CS on the tran-
sition system. The partition structure is represented as a coloring C, that is,
as a mapping from state IDs to “colors” (integers). This mapping then is used
to minimize the transition graph, obtaining SM , and to restore the full vSCS
relation later on. This stage should at least compress τ -cycles if there are any.
Currently, there is only a weak bisimulation (≡SWB) and a delay bisimulation
(≡SDB) option. To reduce the cost of the weak bisimulation computation, we
prepend it by a strong bisimulation minimization.

Compute over-approximation Determines an equivalence relation over-approxi-
mating ≡SMCS . The result is a mapping σ from states to signatures (sets of colors)
such that p vSMCS q implies σ(p) ⊆ σ(q). In the prototype, only the maximal
weak step equivalence ≡⇒| from Subsection 4.5.3 is available.

Build game graph Constructs the τ -closure-free coupled simulation game Gτ SMCS for
SM (Definition 4.22) with attacker states restricted according to the over-ap-
proximation signatures σ. The algorithm in de.bbisping.coupledsim.flink.
CoupledSimulationGameDiscovery is a distributable version of the iterative
game space discovery from Subsection 4.5.1.

Compute winning regions Decides for Gτ SMCS where the attacker has a winning
strategy. de.bbisping.coupledsim.flink.SimpleGameDecider implements
a distributable version of Algorithm 3, following the scatter-gather scheme from
[KVH18]. If a game node is discovered to be won by the attacker, it scatters
the information to its predecessors. Every game node gathers information on
its winning successors. Defender nodes count down their degrees of freedom
starting at their game move out-degrees.

Output Finally, the results can be output or verified. The winning regions directly
imply vSMCS . To work with vSCS , the tuples from vSMCS must be multiplied with
C to obtain vSCS = C vSMCS C−1. At output, the algorithm can also check that
the computed vSCS indeed is a coupled simulation. Due to the massive size of
vSCS and ·̂⇒, this might not always be possible in a reasonable amount of time.

49

http://coupledsim.bbisping.de/code/flink/src/main/scala-2.11/de/bbisping/coupledsim/flink/CoupledSimulationFlink.scala
http://coupledsim.bbisping.de/code/flink/src/main/scala-2.11/de/bbisping/coupledsim/flink/CoupledSimulationGameDiscovery.scala
http://coupledsim.bbisping.de/code/flink/src/main/scala-2.11/de/bbisping/coupledsim/flink/CoupledSimulationGameDiscovery.scala
http://coupledsim.bbisping.de/code/flink/src/main/scala-2.11/de/bbisping/coupledsim/flink/SimpleGameDecider.scala

system S
·→ ·̂=.2 S/≡DB S/≡CS vS/≡CS

CS time/s
phil 10 14 86 6 5 11 7.9
ltbts 88 98 2,599 27 25 38 8.2
vasy_0_1 289 1,224 52,641 9 9 9 10.0
vasy_1_4 1,183 4,464 637,585 4 4 4 9.6
vasy_5_9 5,486 9,676 1,335,325 112 112 112 10.6
cwi_1_2 1,952 2,387 593,734 67 67 137 12.9
cwi_3_14 3,996 14,552 15,964,021 2 2 2 18.8
vasy_8_24 8,879 24,411 2,615,500 170 169 232 13.1
vasy_8_38 8,921 38,424 46,232,423 193 193 193 9.4
vasy_10_56 10,849 56,156 842,087 2,112 2,112 3,932 29.8
vasy_25_25 25,217 25,216 50,433 25,217 25,217 25,217 243.1

Table 5.1: Sample systems, sizes, and benchmark results.

5.1.3 Signature Refinement

Unfortunately, there seems to be no prior implementation of bisimulation computa-
tion in Apache Flink. De Lange et al. [LdLF+13] have realized bisimulation for
the akin technology stack HADOOP/MapReduce using a signature-based approach.
Signature-based approaches indeed are the natural pick for our setting because of
their distributability. The computations of ≡WB and ≡⇒| rely on a small ad-hoc
signature refinement implementation of bisimulation in de.bbisping.coupledsim.
flink.SignatureRefinement. Due to some technicalities that would require a lot
of fiddling, our implementation, for now, only is correct as long as the 32-bit hash
values of the signature sets do not collide. So, starting at about 10,000 input states,
there is a danger (> 1 %) of erroneous results. A more mature solution would be
desirable. Especially, in order to tackle bigger examples, the explicit computation of
the τ -closure would have to be optimized away as in [BGRR16].

5.2 Evaluation
Experimental evaluation shows that the approach can cope with the smaller examples
of the “Very Large Transition Systems (VLTS) Benchmark Suite” [Gar17] (vasy_* and
cwi_* up to 50,000 transitions). On small examples, we also tested that the output
matches the return values of the verified fixed-point vCS -algorithm from Section 4.3.
These samples include, among others, the philosopher system phil containing Pg and
Po from Example 2.5f. and ltbts, which consists of the finitary separating examples
from the linear-time branching-time spectrum [vG93, p. 73].

Table 5.1 summarizes the results for some of our test systems with pre-minimization
by delay bisimilarity and over-approximation by maximal weak step equivalence. The
first two value columns give the system sizes in number of states S and transitions ·→.
The next two columns present derived properties, namely the size of the (weak) delay
step relation ·̂=.,2 and the number of partitions with respect to delay bisimulation
S/≡DB . The following columns enumerate the sizes of the resulting coupled simulation
preorders represented by the partition relation pair (S/≡CS ,v

S/≡CS
CS), where S/≡CS is

2The reported size of
·̂

=. actually only is an upper estimate! As the algorithm works on a system
minimized by strong bisimilarity at this stage, the exact size is unknown.

50

http://coupledsim.bbisping.de/code/flink/src/main/scala-2.11/de/bbisping/coupledsim/flink/SignatureRefinement.scala
http://coupledsim.bbisping.de/code/flink/src/main/scala-2.11/de/bbisping/coupledsim/flink/SignatureRefinement.scala

the partitioning of S with respect to coupled similarity ≡CS , and v
S/≡CS
CS the coupled

simulation preorder projected to this quotient. The last column reports the running
time of the programs on an Intel i7-7500U CPU (2.70GHz) with 2 GB Java Virtual
Machine heap space.

The systems in Table 5.1 are a superset of the VLTS systems for which Ranzato
and Tapparo [RT10] report their algorithm SA to terminate. Regarding complexity,
SA is the best simulation algorithm known. In the [RT10]-experiments, the C++
implementation ran out of 2 GB RAM for vasy_10_56 and vasy_25_25 but finished
much faster than our setup for most smaller examples. Their time advantage on
small systems comes as no surprise as the start-up of the whole Apache Flink pipeline
induces heavy overhead costs of about 8 seconds even for tiny examples like phil.

However, on bigger examples such as vasy_18_73 and vasy_40_60 both implemen-
tations fail. This is in stark contrast to bi-simulation implementations, which usually
cope with much larger systems single-handedly [Li09, BGRR16].3

The experiments yield further evidence for claims from the thesis. The weak step
relations ·̂=. (and its superset ·̂⇒) can indeed become abhorrently large, which is in
line with the theoretical considerations from Subsection 3.5.2. For all tested VLTS
systems, S/≡WB equals S/≡CS (and, with the exception of vasy_8_24, S/≡DB). This
supports the prediction from Section 4.6 that partition relation refinement algorithms
cannot gain much in a setting where a finer weak/delay bisimulation minimization
has already been applied. The preorder vS/≡CS

CS also matches the identity in 6 of 9
examples.

This observation about the effective closeness of vCS and ≡WB is two-fold. On the
one hand, it brings into question how meaningful coupled similarity is for minimization.
After all, it takes a lot of space and time to come up with the output that delay
bisimilarity already minimized everything that could be minimized. On the other
hand, the observation suggests that the considered VLTS samples are based around
models that do not need—or maybe even do avoid—the expressive power of ≡WB.
This is further evidence for the case that vCS has a more sensible level of precision
than ≡WB.

system S/≡DB � �σ.

phil 6 320 201
ltbts 27 4,529 399
vasy_0_1 9 543 67
vasy_1_4 4 105 30
vasy_5_9 112 68,686 808
cwi_1_2 67 46,871 1,559
cwi_3_14 2 19 10
vasy_8_24 170 275,585 3,199
vasy_8_38 193 303,819 2,163
vasy_10_56 2,112 o.o.m. 74,269
vasy_25_25 25,217 o.o.m. 126,083

Table 5.2: Plain vs. optimized game size.

The experiments moreover demon-
strate that the optimizations from Sec-
tion 4.5 really are necessary for larger
systems. Table 5.2 lists the sizes of the
game graphs without and with maxi-
mal weak step over-approximation (�
and�σ). Without over-approximation,
vasy_10_56 and vasy_25_25 ran out of
memory (“o.o.m.”). The over-approxima-
tion stage, which accounts for half of the
program running time, creates the oppor-
tunity to bring down game size decisively.
Due to the τ -trick from Subsection 4.5.4,
the game size can remain a fraction of
the weak transition relation size.

3vasy_40_60 is an anomaly where Paige–Tarjan-based algorithms outperform signature-based
algorithms by orders of magnitude; for vasy_25_25, it is the other way around.

51

Chapter 6

Conclusion

They say that all good things come to an end. So, ω-traces and defender-winning
plays presumably are no good things. This thesis has the chance of being good, given
that it has an end—even more than one if one also counts the ends intentionally left
loose.

The core of this thesis has been to introduce a game algorithm to decide the
coupled simulation preorder and thereby coupled similarity. This algorithm runs in
cubic time with respect to the state space size of the input transition system. Since
we have shown that weak simulation reduces to coupled simulation, the theoretical
time bounds presumably cannot get much better.

Nevertheless, it would be interesting whether our algorithms can be modified
to require sub-cubic space. A few pointers on how this could be possible can be
found in the discussion of symbolic refinements (Section 4.6). Related to this is the
question how to turn the modal-logical characterization of coupled similarity into
an algorithm. Van Glabbeek [vG93] presents a characterization that basically is
Hennesy–Milner modal logic (HML) with a weakened negation operator , where
ϕ is true in a state iff it can reach a state where not ϕ by ⇒-steps. Some similarity

algorithms, including Ranzato and Tapparo’s [RT10], iteratively split partitions
along the question which states can be distinguished by modal-logic formulas in light
of the distinctions determined so far. Such algorithms can certainly be amended with
the additional separating power of . However, we suspect that many algorithmic
tricks stop being an option as is not distributive.

We have not touched on the question how the maximal weak step bisimilarity we
used for over-approximations relates to the standard notions of equivalence. Also,
the closeness of coupled similarity and delay similarity, which usually is neglected
in the literature, could be researched further. We were able to show that there are
open questions concerning the relationship of coupled similarity and contrasimilarity.
Addressing these questions could pave the way to employing our algorithms to decide
contrasimilarity, for which there also seems to be no tool support.

Our scalable implementation of the coupled simulation game algorithm has shown
that the game approach can cope with similar system sizes when compared to the
available simulation algorithms. The implementation could be a basis for further
experiments with notions of equivalence in Apache Flink or a blueprint for a GPU
version of the algorithm.

52

Figure 6.1: CoupledSim Fiddle web tool at coupledsim.bbisping.de showing the
philosopher system SP (gray) and vSP

CS (blue).

Moreover, we have verified a simple coupled simulation algorithm and continued
work on a normalization-based reduction of coupled similarity to bisimilarity. Develop-
ment, testing, and presentation of new algorithms for notions of equivalence is made
simple by our web tool on https://coupledsim.bbisping.de (for a screenshot, see
Figure 6.1).

By benchmarking our Flink-implementation with the VLTS suite, we have es-
tablished that coupled similarity and weak bisimilarity coincide for the considered
systems. This points back to a line of thought by van Glabbeek and Weijland
[vGW96] that, for many applications, branching, delay and weak bisimilarity will
coincide with coupled similarity. Where they do not, usually coupled similarity or a
coarser notion of equivalence is called for. Apparently, the designers of the case studies
behind the VLTS systems (unintentionally?) took care to stay in the realm where
various branching-time equivalences resemble coupled similarity. The higher semantic
precision of weak bisimilarity and the like is uncalled for, and coupled similarity
probably does right to dispense with it. However, real case studies—and maybe an
embedding into existing tool landscapes like FDR [GRABR14], CADP [GLMS13], or
LTSmin [KLM+15]—would be necessary to gain deeper insights here.

It would be interesting to have a better way of telling ex ante whether coupled
similarity and finer notions of equivalence coincide for a given transition system. The
normality property of Section 4.2, for example, describes a class of transition systems
where the hierarchy between coupled simulation and strong bisimulation collapses.
Can one abstract this property further, or narrow it down to a property where only
the hierarchy between branching bisimulation and coupled simulation is bridged?
Such a result could help turn the normalization-based reduction into a reliable and
tractable algorithm. This—and many other interesting research approaches—would be
facilitated by our Isabelle/HOL formalization for various notions of coupled simulation
and their properties.

53

https://coupledsim.bbisping.de
https://coupledsim.bbisping.de

Bibliography

[AIS11] Luca Aceto, Anna Ingolfsdottir, and Jiri Srba. The algorithmics of
bisimilarity, pages 100–172. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2011. 16

[Bel13] Christian J. Bell. Certifiably sound parallelizing transformations. In
International Conference on Certified Programs and Proofs, pages 227–
242. Springer, 2013. 13

[BGRR16] Alexandre Boulgakov, Thomas Gibson-Robinson, and A. W. Roscoe.
Computing maximal weak and other bisimulations. Formal Aspects of
Computing, 28(3):381–407, 2016. 2, 35, 50, 51

[BO03] Stefan Blom and Simona Orzan. Distributed branching bisimulation
reduction of state spaces. Electronic Notes in Theoretical Computer
Science, 89(1):99–113, 2003. 46

[Bul11] Peter E. Bulychev. Game-theoretic simulation checking tool. Program-
ming and Computer Software, 37(4):200, 2011. 47

[CH93] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a
bisimulation equivalence. Formal Aspects of Computing, 5(1):1–20, 1993.
39, 41

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache Flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 36(4), 2015. 48

[DPP04] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient al-
gorithm for computing bisimulation equivalence. Theoretical Computer
Science, 311(1):221–256, 2004. 32

[DW03] John Derrick and Heike Wehrheim. Using coupled simulations in non-
atomic refinement. In International Conference of B and Z Users, pages
127–147, Berlin, Heidelberg, 2003. Springer. 1

[EHS+13] Christian Eisentraut, Holger Hermanns, Johann Schuster, Andrea Turrini,
and Lijun Zhang. The quest for minimal quotients for probabilistic
automata. In Nir Piterman and Scott A. Smolka, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 16–31,
Berlin, Heidelberg, 2013. Springer. 35

[FG05] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for
asynchronous calculi. The Journal of Logic and Algebraic Programming,
63(1):131–173, 2005. 22

[Gar17] Hubert Garavel. The VLTS benchmark suite, 2017. Jointly created by
CWI/SEN2 and INRIA/VASY as a CADP resource. 50

54

[GJKW17] Jan Friso Groote, David N. Jansen, Jeroen J. A. Keiren, and Anton J.
Wijs. An O(m logn) algorithm for computing stuttering equivalence
and branching bisimulation. ACM Transactions on Computational Logic
(TOCL), 18(2):13:1–13:34, 2017. 35

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2011: A toolbox for the construction and analysis of distributed
processes. International Journal on Software Tools for Technology Trans-
fer, 15(2):89–107, 2013. 53

[GPP03] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. From bisimula-
tion to simulation: Coarsest partition problems. Journal of Automated
Reasoning, 31(1):73–103, 2003. 47

[Grä07] Erich Grädel. Finite model theory and descriptive complexity. In
E. Grädel, P.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi,
Y. Venema, and S. Weinstein, editors, Finite Model Theory and Its Ap-
plications, Texts in Theoretical Computer Science. An EATCS Series,
pages 125–230. Springer Berlin Heidelberg, 2007. 16, 41, 43

[GRABR14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and
A. W. Roscoe. FDR3: A modern refinement checker for CSP. In Erika
Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 187–201. Springer Berlin
Heidelberg, 2014. 53

[HHK95] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke.
Computing simulations on finite and infinite graphs. In 36th Annual
Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,
pages 453–462, 1995. 32, 47, 48

[Hod13] Wilfrid Hodges. Logic and games. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, spring 2013 edition, 2013. 16

[HWPN15] Meike Hatzel, Christoph Wagner, Kirstin Peters, and Uwe Nestmann.
Encoding CSP into CCS. In Proceedings of the Combined 22th Interna-
tional Workshop on Expressiveness in Concurrency and 12th Workshop
on Structural Operational Semantics, and 12th Workshop on Structural
Operational Semantics, EXPRESS/SOS, pages 61–75, 2015. 1

[KLM+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom,
and Tom van Dijk. LTSmin: High-performance language-independent
model checking. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 692–707. Springer,
2015. 53

[KM02] Antonín Kučera and Richard Mayr. Why is simulation harder than
bisimulation? In Luboš Brim, Mojmír Křetínský, Antonín Kučera, and
Petr Jančar, editors, CONCUR 2002 — Concurrency Theory: 13th
International Conference Brno, Czech Republic, August 20–23, 2002
Proceedings, pages 594–609. Springer Berlin Heidelberg, 2002. 31

[Kre16] Stephan Kreutzer. Logic, games, automata. Lecture notes, 2016. 41, 43

[KS06] Antonín Kučera and Philippe Schnoebelen. A general approach to
comparing infinite-state systems with their finite-state specifications.
Theoretical Computer Science, 358(2-3):315–333, 2006. 23

[KVH18] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. High-level program-

55

ming abstractions for distributed graph processing. IEEE Transactions
on Knowledge and Data Engineering, 30(2):305–324, 2018. 49

[LdLF+13] Yongming Luo, Yannick de Lange, George HL Fletcher, Paul De Bra,
Jan Hidders, and Yuqing Wu. Bisimulation reduction of big graphs on
MapReduce. In British National Conference on Databases, pages 189–203.
Springer, 2013. 50

[Li09] Weisong Li. Algorithms for computing weak bisimulation equivalence.
In Theoretical Aspects of Software Engineering, 2009. TASE 2009. Third
IEEE International Symposium on, pages 241–248. IEEE, 2009. 35, 51

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989. 5, 15, 16, 26, 28

[NNH15] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
program analysis. Springer, 2015. 38

[NP00] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings.
Information and Computation, 163(1):1–59, 2000. 1, 6, 21, 26

[Pit11] Andrew Pitts. Howe’s method for higher-order languages. In Davide
Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and
Coinduction, pages 197–232. Cambridge University Press, 2011. 25

[PS92] Joachim Parrow and Peter Sjödin. Multiway synchronization verified
with coupled simulation. In W.R. Cleaveland, editor, CONCUR ’92:
Third International Conference on Concurrency Theory Stony Brook, NY,
USA, August 24–27, 1992 Proceedings, pages 518–533. Springer Berlin
Heidelberg, 1992. 1, 6, 20

[PS94] Joachim Parrow and Peter Sjödin. The complete axiomatization of Cs-
congruence. In Patrice Enjalbert, Ernst W. Mayr, and Klaus W. Wagner,
editors, STACS 94: 11th Annual Symposium on Theoretical Aspects
of Computer Science Caen, France, February 24–26, 1994 Proceedings,
pages 555–568. Springer Berlin Heidelberg, 1994. 2, 14, 20, 21, 22, 26,
27, 28, 34, 36, 37, 39, 41, 47

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algo-
rithms. SIAM Journal on Computing, 16(6):973–989, 1987. 36

[PvG15] Kirstin Peters and Rob J. van Glabbeek. Analysing and comparing
encodability criteria. In Proceedings of the Combined 22th International
Workshop on Expressiveness in Concurrency and 12th Workshop on
Structural Operational Semantics, and 12th Workshop on Structural
Operational Semantics, EXPRESS/SOS, pages 46–60, 2015. 22

[Ren00] Arend Rensink. Action contraction. In International Conference on
Concurrency Theory, pages 290–305. Springer, 2000. 1, 21, 25

[RT08] Francesco Ranzato and Francesco Tapparo. Generalizing the Paige–
Tarjan algorithm by abstract interpretation. Information and Com-
putation, 206(5):620–651, 2008. Special Issue: The 17th International
Conference on Concurrency Theory (CONCUR 2006). 32, 35

[RT10] Francesco Ranzato and Francesco Tapparo. An efficient simulation algo-
rithm based on abstract interpretation. Information and Computation,
208(1):1–22, 2010. 32, 47, 48, 51, 52

[San12] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, New York, NY, USA, 2012. 4, 6, 9, 20, 21, 22,
27

56

[Sch15] Christiane Schulte. Der deutsch-deutsche Schäferhund – Ein Beitrag zur
Gewaltgeschichte des Jahrhunderts der Extreme. Totalitarismus und
Demokratie, 12(2):319–334, 2015. 10

[Sti93] Colin Stirling. Modal and temporal logics for processes. Technical report,
Department of Computer Science, University of Edinburgh, 1993. 17

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972. 34

[vG90] Rob J. van Glabbeek. The linear time–branching time spectrum. In In-
ternational Conference on Concurrency Theory, pages 278–297. Springer,
1990. 8

[vG93] Rob J. van Glabbeek. The linear time–branching time spectrum II. In
International Conference on Concurrency Theory, pages 66–81. Springer,
1993. 1, 8, 16, 50, 52

[vG17] Rob J. van Glabbeek. A branching time model of CSP. CoRR, 2017. 1,
19, 21, 22, 26, 28, 34

[vGP08] Rob J. van Glabbeek and Bas Ploeger. Correcting a space-efficient
simulation algorithm. In International Conference on Computer Aided
Verification, pages 517–529. Springer, 2008. 47

[vGW96] Rob J. van Glabbeek and W. Peter Weijland. Branching time and
abstraction in bisimulation semantics. Journal of the ACM (JACM),
43(3):555–600, 1996. 35, 53

[VM00] Marc Voorhoeve and Sjouke Mauw. Impossible futures and determinism.
Computing science reports Vol. 0014, Technische Universiteit Eindhoven,
Eindhoven, 2000. 23

[VM01] Marc Voorhoeve and Sjouke Mauw. Impossible futures and determinism.
Information Processing Letters, 80(1):51–58, 2001. 13, 23

[WHH+06] Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp, and
Bernd Becker. Sigref: A symbolic bisimulation tool box. In Susanne
Graf and Wenhui Zhang, editors, Automated Technology for Verifica-
tion and Analysis: 4th International Symposium, ATVA 2006, Beijing,
China, October 23-26, 2006. Proceedings, pages 477–492. Springer Berlin
Heidelberg, 2006. 46, 47

[Wim11] Ralf Wimmer. Symbolische Methoden für die probabilistische Verifikation –
Zustandsraumreduktion und Gegenbeispiele. Dissertation, Albert-Ludwigs-
Universität Freiburg, Freiburg im Breisgau, Germany, January 2011. 46,
47

57

Nomenclature

iff “If and only if” in definitions

|A| Number of elements of A

∆A Identity relation on A

Σ∗, Σω, Σ∞ Language of finite, infinite, finite-or-infinite words over alphabet Σ

2A Power set of A (set of subsets)

A/≡X Quotient set of A by equivalence ≡X (notation also used for quotient
transition systems, Def. 4.3)

R−1 Inverse relation of R

R∗ Reflexive transitive closure of relation R

≡C ,vC Contrasimilarity, contrasimulation preorder (Def. 2.13)

≡CS ,vCS ,≡CSc Coupled similarity, coupled simulation preorder (Def. 3.1), rooted
coupled similarity (Def. 3.21)

≡B Strong bisimilarity (like weak bisimilarity, Def. 2.12, but with →-answers
instead of ˆ⇒-answers)

≡S ,vS Strong similarity (like weak similarity, Def. 2.7, but with →-answers
instead of ˆ⇒-answers), strong simulation preorder

≡WB,≡WBc Weak bisimilarity (Def. 2.12), rooted weak bisimilarity (Def. 2.22)

≡WS ,vWS Weak similarity, weak simulation preorder (Def. 2.7)
α→ Transition relation (Def. 2.1)

6 α→ Absence of a transition (Disabledness of α)
α⇒ Weak transition relation (Def. 2.2)
α̂⇒ Weak transition relation reflexive on τ (Def. 2.2)
α̂=. Weak delay transition relation reflexive on τ (Def. 3.14)

� Game move (Def. 2.25)

58

	Introduction
	Computing Coupled Similarity
	This Thesis
	Accompanying Artifacts

	Preliminaries
	System Models
	Equivalences and Preorders
	Axiomatizations
	Game-Theoretic Characterizations

	Coupled Simulation
	Definitions of Coupled Simulation
	Properties of Coupled Similarity
	Axiomatization of Coupled Similarity
	Coupled Simulation as a Game
	How Hard Can It Be?

	Algorithms
	Setting the Stage
	The Bisimulation Approach
	The Fixed-Point Approach
	The Game-Theoretic Approach
	Optimizing the Game Algorithm
	Discussion

	A Scalable Implementation
	Prototype Implementation
	Evaluation

	Conclusion
	Bibliography
	Nomenclature

